SASREF: Global Rigid Body Modelling

- Starts from arbitrary initial positions and orientations of the subunits
- Employs simulated annealing to search interconnected arrangement of the subunits without clashes
- Random movement/rotation at one SA step
- Fitting the SAXS/SANS data by minimizing the target function

 $E(X) = \sum \chi^2 [I_{exp}(s), I(X,s)] + \sum \alpha_i P_i(X)$

• Penalty terms describe additional restraints

Petoukhov, M. V., and Svergun, D. I. (2006). *Eur Biophys J.*, 35, 567-576

 Subunit arrangements with steric clashes and disconnected models are penalized.

• Overlap: C_a - C_a distance < 4 A.

• The contact distance between $C\alpha$ atoms of distinct subunits: 4-7 A.

Contacts restraints

- From binding affinity studies or from mutagenesis data the information on contacting subunits and even individual residues can be available.
- Such information is accounted for by specifying the ranges of residues or nucleotides which can be involved in interactions between the partners.
- Spring force potentials are added as penalties

Possible constraints

Symmetry

Groups Pn / Pn2 (n=1..6), P23, P432 and icosahedral symmetry can be taken into account.

- fewer spatial parameters to describe the model
- selection rules for the partial amplitudes:
 - m equal to 0 or multiples of n,
 - for Pn2, terms of order *l0* with odd *l* and all imaginary parts vanish

Fixation of subset

Some subunits can be fixed at the initial positions and orientations to keep their mutual arrangement

Test examples

- Symmetric tetramer of pyruvate oxidase
- Dimeric & trimeric functional units of hemocyanin (Patrice)
- TK Met ectodomain multidomain protein with no extended linkers

MRGSHHHHHH	GSGVPSRVIH	IRKLPIDVTE	GEVISLGLPF	GKVTNLLMLK
GKNQAFIEMN	TEEAANTMVN	YYTSVTPVLR	GQPIYIQFSN	HKELKTDSSP
NQARAQAALQ	AVNSVQSGNL	ALAASAAAVD	AGMAMAGQSP	VLRIIVENLF
YPVTLDVLHQ	IFSKFGTVLK	IITFTKNNQF	QALLQYADPV	SAQHAKLSLD
GQNIYNACCT	LRIDFSKLTS	LNVKYNNDKS	RDYTRPDLPS	GDSQPSLDQT
MAAAFGLSVP	NVHGALAPLA	IPSAAAAAAA	AGRIAIPGLA	GAGNSVLLVS
NLNPERVTPQ	SLFILFGVYG	DVQRVKILFN	KKENALVQMA	DGNQAQLAMS
HLNGHKLHGK	PIRITLSKHO	NVOLPREGOE	DOGLTKDYGN	SPLHRFKKPG

Modelling of multidomain proteins

- A combined approach is proposed to built the models of multidomain proteins with large and flexible interdomain linkers
- The latter are represented as DR chains which are attached to the appropriate terminals in rigid domains.
- A single modification of a model is a rotation about one or two randomly selected DR(s).

Modelling of multidomain proteins

Building native-like folds of linkers

Absence of steric clashes

Dihedral angles, degrees

Bond angles & dihedrals distribution

Loop compactness may also be required $Rg_{id} = 3\sqrt[3]{n_l}$

Simultaneous fitting of multiple data sets from deletion mutants

PTB protein

CORAL: new in ATSAS 2.4

Sasref vs Bunch

Merging Sasref and Bunch

CORAL = COmplexes with RAndom Loops

RanLog library

Simplified input (config file)

NTER 20 A1.pdb **LINK 25** A2.pdb **CTER 10 NTER 45** B1.pdb C1.pdb

Example

• GST-DHFR fusion protein (Kate)