

Study of biomolecular complexes

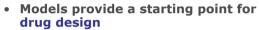
- Classical NMR & X-ray crystallography approaches can be time-consuming
- Problems arise with "bad behaving", weak and/or transient complexes!
- Complementary computational methods are needed!

"docking" prediction of the structure of a complex based on the structures of its constituents

"Critical assessment of predicted interactions" http://capri.ebi.ac.uk

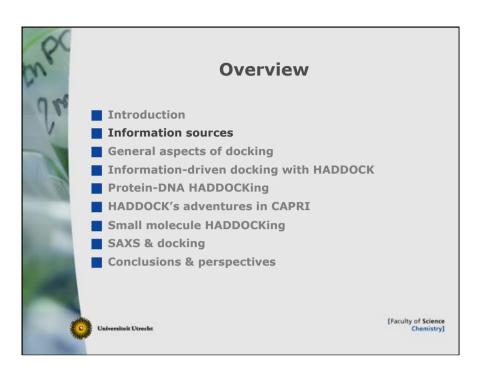
Chemistry1

Data-driven docking


- There is a wealth of (easily) available experimental data on biomolecular interaction.
- When classical structural studies fail, these are however often not used and the step to modelling (docking) is most of the time not taken.
- These data can be very useful to filter docking solutions or even to drive the docking and thus limit the conformational search problem.

What can we learn from 3D structures (models) of complexes?

- Models provide structural insight into function and mechanism of action
- · Models can drive and guide experimental studies



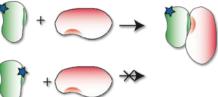
[Faculty of Science

Related reviews

- van Dijk ADJ, Boelens R and Bonvin AMJJ (2005). Data-driven docking for the study of biomolecular complexes. FEBS Journal 272 293-312.
- de Vries SJ and Bonvin AMJJ (2008). How proteins get in touch: Interface prediction in the study of biomolecular complexes. Curr. Pept. and Prot. Research 9, 394-406.
- de Vries SJ, de Vries M. and Bonvin AMJJ. The prediction of macromolecular complexes by docking. In: Prediction of Protein Structures, Functions, and Interactions. Edited by J. Bujnicki Ed., John Wiley & Sons, Ltd, Chichester, UK (2009).
- A.S.J. Melguiond and A.M.J.J. Bonvin. Data-driven docking: using external information to spark the biomolecular rendez-vous. In: Protein-protein complexes: analysis, modelling and drug design. Edited by M. Zacharrias, Imperial College Press, 2010. p 183-209.

Experimental sources: cross-linking and other chemical modifications

Advantages/disadvantages


Detection

- + Distance information between Mass spectrometry linker residues
- Cross-linking reaction problematic
- Detection difficult

[Faculty of Science

Experimental sources: mutagenesis

Advantages/disadvantages

- + Residue level information
- Loss of native structure should be checked

Detection

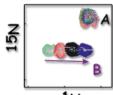
- Binding assays
- Surface plasmon resonance
- Mass spectrometry
- Yeast two hybrid
- Phage display libraries, ...

Experimental sources: H/D exchange

Advantages/disadvantages

- + Residue information
- Direct vs indirect effects
- Labeling needed for NMR

Detection


- Mass spectrometry
- NMR 15N HSQC

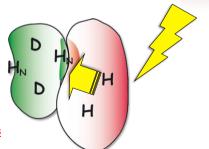
Experimental sources: NMR chemical shift perturbations

1_H

Advantages/disadvantages

+ Residue/atomic level

- + No need for assignment if combined with a.a. selective labeling
- Direct vs indirect effects
- Labeling needed


Chemistry1

Detection

- NMR ¹⁵N or ¹³C HSQC

Experimental sources: NMR saturation transfer

Amide protons at interface are saturated ==> intensity decrease

Advantages/disadvantages

- + Residue/atomic level
- + No need for assignment if combined with a.a. selective labeling
- Labeling (including deuteration) needed

[Faculty of Science

Experimental sources: NMR orientational data (RDCs, relaxation)

Advantages/disadvantages

+ Atomic level

- Labeling needed

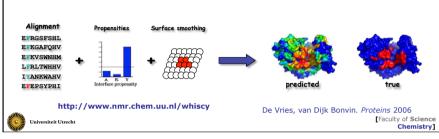
Detection

- NMR

[Faculty of Science

Other potential experimental sources

- Paramagnetic probes in combination with NMR
- Cryo-electron microscopy or tomography and small angle X-ray scattering (SAXS) ==> shape information
- Fluorescence quenching
- Fluorescence resonance energy transfer (FRET)
- Infrared spectroscopy combined with specific labeling



Predicting interaction surfaces

• WHISCY:

WHat Information does Surface Conservation Yield?

How to calculate expected conservation?

AFRGTFSHL AFRGTFSHL EFEPSYPHI

Near identical sequences
No conservation

Different sequences Conservation

Sequence distance must be taken into account

[Faculty of Science Chemistry]

What is conservation?

- How to calculate conservation?
 - Generate a sequence alignment
 - Calculate the expected mutation behavior
 - Calculate deviations from this behavior
 - Is there less change than expected?
- The residue conservation score is the sum of all deviations from expected behavior

Residue mutation matrix example

• Sequence distance: 1 % mutation

	Ala	<i>As</i> p	Glu	Trp
Ala	99	0.33	0.33	0.33
Asp	0.33	99	0.33	0.33
glu	0.33	0.33	99	0.33
Trp	0.33	0.33	0.33	99

Residue mutation matrix example

Some residues mutate however faster than others

	Ala	<i>As</i> p	Glu	Trp
Ala	98	0.67	0.67	0.67
<i>As</i> p	0.33	99	0.33	0.33
glu	0.33	0.33	99	0.33
Trp	0.17	0.17	0.17	99.5

Faculty of Science

Residue mutation matrix example

Some mutations are more likely than others

	Ala	<i>As</i> p	Glu	Trp
Ala	98	0.67	0.67	0.67
Asp	0.17	99	0.67	0.17
glu	0.17	0.67	99	0.17
Trp	0.17	0.17	0.17	99.5

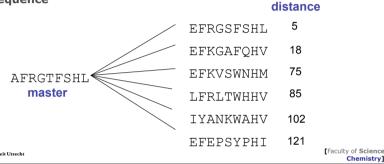
[Faculty of Science Chemistry]

Residue mutation matrix example

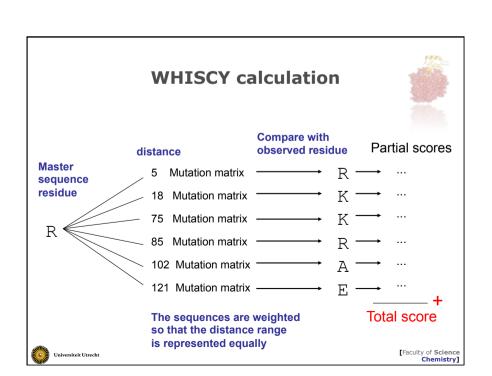
- You can multiply the matrix by itself to generate distance specific matrices
 - E.g. result of 20 multiplications: 20 % mutation

	Ala	Asp	Glu	Trp
Ala	65.96	11.35	11.35	11.35
<i>As</i> p	2.84	82	11.74	3.42
glu	2.84	11.74	82	3.42
Trp	2.84	3.42	3.42	90.32

Resid

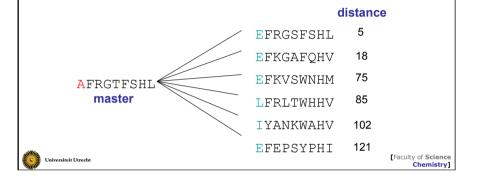

Residue mutation matrix

- Several of such matrices exist
- The best known is the Dayhoff (PAM) matrix (Dayhoff et al. 1978)
- This matrix is used in Whiscy



WHISCY calculation

- Take as input a 3D structure and a sequence alignment
- protdist (Felsenstein et al.) used to calculate the sequence distances
- WHISCY compares the master sequence to every other


Chemistry1

WHISCY calculation

Each residue is scored independently

Partial score

- The partial score is equal to the probability in the distance-dependent mutation matrix
- A correction factor corresponding to the sum of squares of all probabilities is subtracted
- This makes sure that the average score is zero
- WHISCY score > 0 indicates conservation

Testing WHISCY with known complexes

- Benchmark of 37 protein complexes (Chen et al. 2003)
- Sequence alignments from the HSSP database (Sander et al. 1991)
 - Some proteins were left out of prediction because of bad sequence alignments
- Interface definitions by DIMPLOT (Wallace et al. 1995)
 - Residues making contacts across interface (hbond + non-bonded)
- Surface definition by NACCESS (Hubbard & Thornton 1993) (15 % accessibility cutoff)

[Faculty of Science Chemistry]

Improving the score using amino acid interface propensities

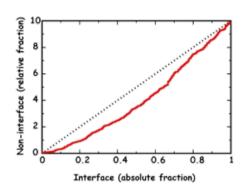
• Each amino acid has its own interface propensity (from analysis of 3D structures of known complexes):

frequency at the interface frequency at the surface

WHISCY score converted into a p-value and Interface propensity

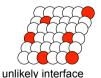
divided by the a.a. interface propensity

Residue X: score
$$\rightarrow$$
 p = 0.10 $\stackrel{/2.5}{\rightarrow}$ p = 0.04 \rightarrow higher score


Residue Z: score \rightarrow p = 0.10 \rightarrow p = 0.25 \rightarrow lower score

[Faculty of Science Chemistry]

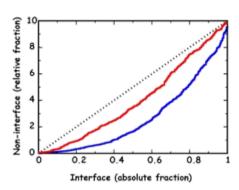
WHISCY raw performance


 Fraction of correct versus incorrect predictions for the benchmark

[Faculty of Science Chemistry]

Improving the score by surface smoothing

 Interface residues are not spread over the surface but form patches


likely interface

- Take the scores of the neighbors into account:
 - Residues with high-scoring neighbors should get a bonus
 - Residues with low-scoring neighbors should get a penalty
- => Scores are smoothed over a 15Å radius using a Gaussian or optimized step function

WHISCY optimized performance

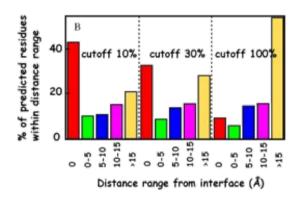
 Fraction of correct versus incorrect predictions for the benchmark

[Faculty of Science

Predicting interaction surfaces

- Several other approaches have been described:
 - HSSP (Sander & Schneider, 1993) - Evolutionary trace (Lichtarge et al., 1996)
 - Correlated mutations (Pazos et al., 1996)

 - ConsSurf (Armon et al., 2001)
 - Neural network (Zhou & Shan, 2001) (Fariselli et al., 2002)
 - Rate4Site (Pupko et al., 2002)
 - ProMate (Neuvirth et al., 2004)
 - PPI-PRED (Bradford & Westhead, 2005)
 - PPISP (Chen & Zhou, 2005)
 - PINUP (Liang et al., 2006)
 - SPPIDER (Kufareva et al, 2007)
 - PIER (Porolo & Meller, 2007)
 - SVM method (Dong et al., 2007)

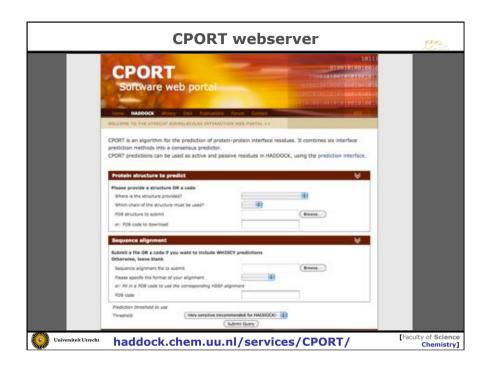

 - Our recent meta-server: CPORT (de Vries & Bonvin, 2011)

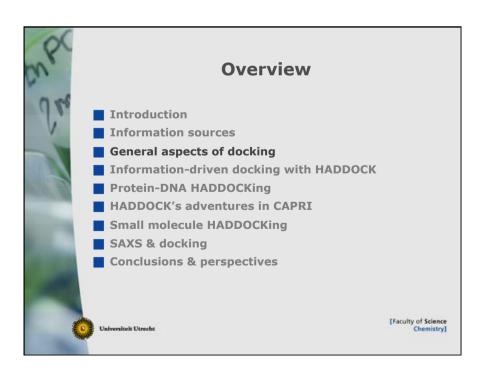
See review article (de Vries & Bonvin 2008)

[Faculty of Science

Distribution of predicted interface residues as a function of their distance from the true interface

10% cutoff indicates the WHISCY cutoff resulting in 10% of the true interface predicted


Interface prediction servers



- PPISP (Zhou & Shan, 2001; Chen & Zhou, 2005) http://pipe.scs.fsu.edu/ppisp.html
- ProMate (Neuvirth et al., 2004) http://bioportal.weizmann.ac.il/promate
- WHISCY (De Vries et al., 2005) http://www.nmr.chem.uu.nl/whiscy
- PINUP (Liang et al., 2006) http://sparks.informatics.iupui.edu/PINUP
- PIER (Kufareva et al., 2006) http://abagyan.scripps.edu/PIER
- SPPIDER (Porollo & Meller, 2007) http://sppider.cchmc.org

Consensus interface prediction (CPORT) haddock.chem.uu.nl/services/CPORT

Combining experimental or predicted data with docking

- · a posteriori: data-filtered docking
 - Use standard docking approach
 - Filter/rescore solutions
- a priori: data-directed docking
 - Include data directly in the docking by adding an additional energy term or limiting the search space

[Faculty of Science Chemistry

A few docking reviews

- Halperin et al. (2002) "Principles of docking: an overview of search algorithms and a guide to scoring functions".
 PROTEINS: Struc. Funct. & Genetics 47, 409-443.
- Special issues of PROTEINS: (2003) (2005) (2007) and (2010) which are dedicated to CAPRI.
- Brooijmans and Kuntz (2003) "Molecular recognition and docking algorithms". Annu. Rev. Biophys. Biomol. Struct. 32, 335-373.
- Russell et al. (2004) "A structural perspective on proteinprotein interactions". Curr. Opin. Struc. Biol. 14, 313-324.
- Van Dijk et al. (2005) "Data-driven docking for the study of biomolecular complexes." FEBS J. 272, 293-312.

Docking

- Choices to be made in docking:
 - Representation of the system
 - Sampling method:
 - 3 rotations and 3 translations
 - Internal degrees of freedom?
 - Scoring
 - Flexibility, conformational changes?
 - Use experimental information?

[Faculty of Science Chemistry]

Scoring

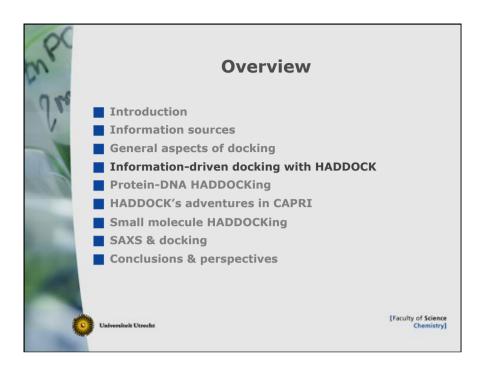
- The holy grail in docking!
- Depends on the representation of the system and treatment of flexibility
- Depends on the type of complexes
 - e.g. antibody-antigen might behave differently than enzyme-inhibitors complexes

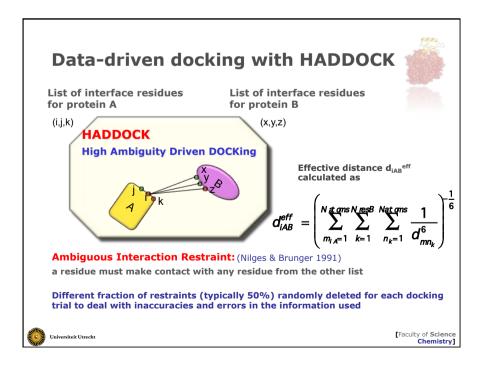
Dealing with flexibility

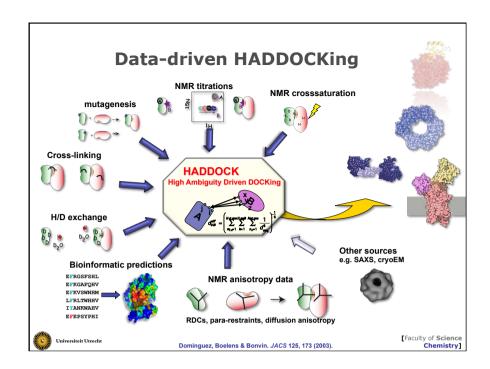
- Flexibility makes the docking problem harder!
 - Increased number of degrees of freedom
 - Scoring more difficult
- Difficult to predict a-priori conformational changes
- Current docking methodology can mainly deal with small conformational changes
- Treatment of flexibility depends on the chosen representation of the system and the search method

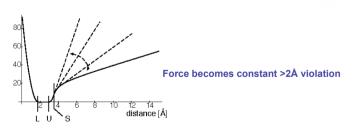
[Faculty of Science Chemistry]

Scoring




- Score is often a combination of various (empirical) terms such as
 - Intermolecular van der Waals energy
 - Intermolecular electrostatic energy
 - Hydrogen bonding
 - Buried surface area
 - Desolvation energy
 - Entropy loss
 - Amino-acid interface propensities
 - Statistical potentials such as pairwise residue contact matrices
 - ...
- Experimental filters sometimes applied a posteriori if data available (e.g. NMR chemical shift perturbations, mutagenesis,..)





Soft-square potential (Nilges) used to avoid large forces

 Different fraction of restraints (typically 50%) randomly deleted for each docking trial to deal with inaccuracies and errors in the information used

[Faculty of Science AB/10-08 Chemistry]

Searching the interaction space in HADDOCK

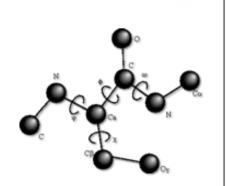
 Experimental and/or predicted information is combined with an empirical force field into an energy function whose minimum is searched for

• V_{potential} = V_{bonds} + V_{angles}

+ V_{torsion}

+ V_{non-bonded}

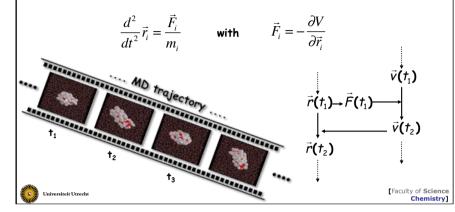
+ V_{exp}

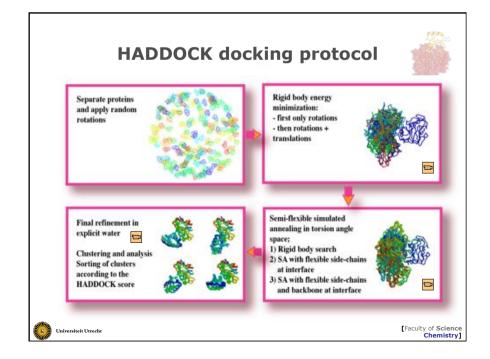

 Search is performed by a combination of gradient driven energy minimization and molecular dynamics simulations

[Faculty of Science Chemistry]

Torsion angle dynamics

- dynamics time step dictated by bond stretching: waste of CPU time
- important motions are around torsions
- ~ 3 degrees of freedom per AA (vs 3N_{atom} for Cartesian dynamics)
- Available in DYANA, X-PLOR, CNS, X-PLOR-NIH




Universiteit Utrech

Faculty of Science Chemistry

Classical mechanics

 Molecular dynamics: generates successive configurations of the system by integrating Newton's second law

HADDOCK & Flexibility

• Several levels of flexibility:

• Implicit:

- docking from ensembles of structures
- Scaling down of intermolecular interactions

• Explicit:

- semi-flexible refinement stage with both sidechain and backbone flexibility during in torsion angle dynamics
- Final refinement in explicit solvent

Universiteit Utrech

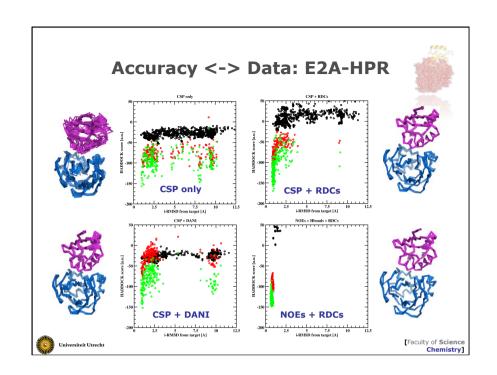
[Faculty of Scie Chemist

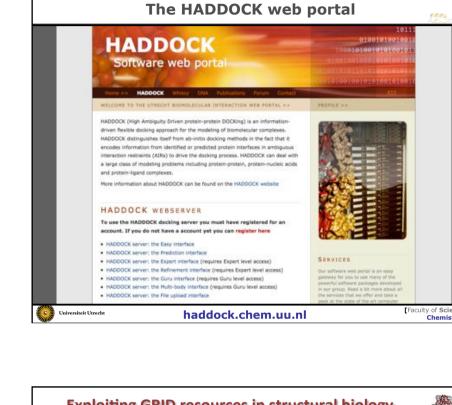
The Not4 – UbcH5B complex Best Haddock solutions • Not4: involved in the RNA polymerase II regulation. Contains a N-terminal Ring finger domain (Hanzawa et al., 2000) • UbcH5B: involved in the ubiquitination pathway • UbcH5B: involved in the ubiquitination pathway Faculty of Science Chemistry **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Structure 2004 **Faculty of Science Chemistry** **Faculty of Science Chemistry** **Controlled Utredat Dominguez, Bonvin, Winkler, van Schaik, Timmers & Boelens. Stru

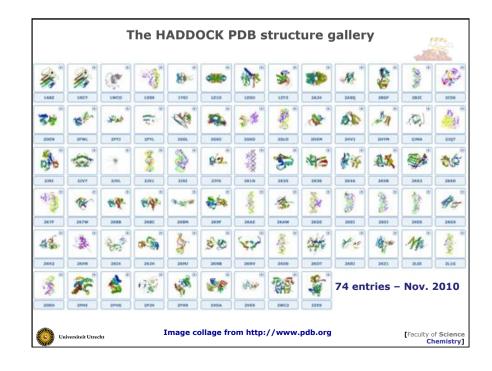
Energetics & Scoring

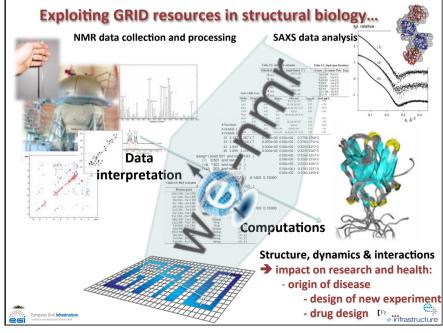
- OPLS non-bonded parameters (Jorgensen, JACS 110, 1657 (1988))
- 8.5Å non-bonded cutoff, switching function, e=10
- Ranking of based on HADDOCK score defined as:

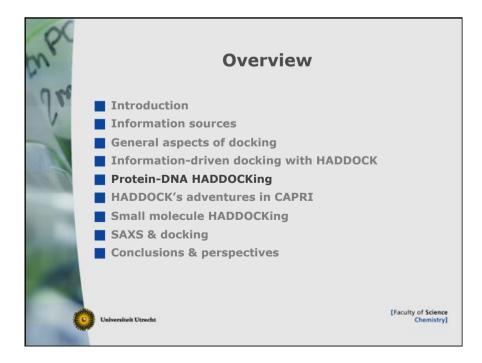
- E_{air}: ambiguous interaction restraint energy
- E_{desolv}: desolvation energy using Atomic Solvation
 Parameters (Fernandez-Recio et al JMB 335, 843 (2004))
- BSA: buried surface area

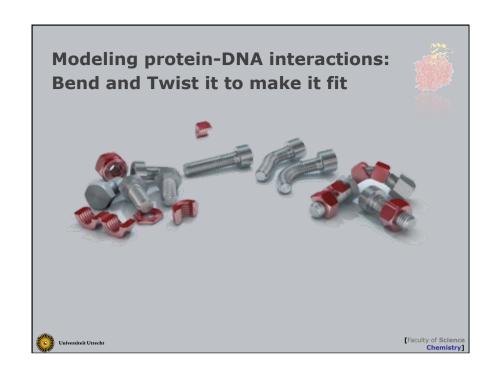

[Faculty of Science Chemistry]

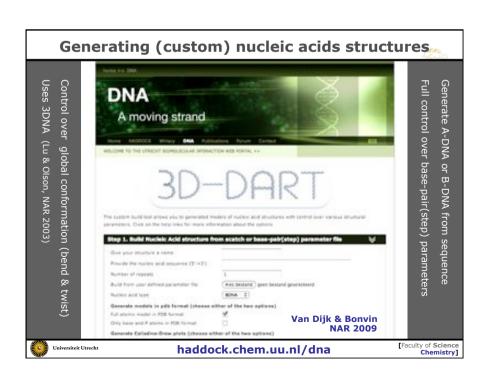

Accuracy <-> Data

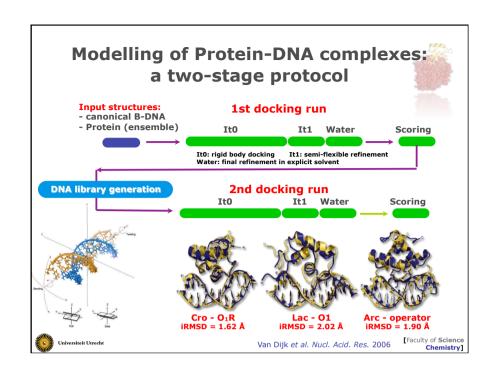


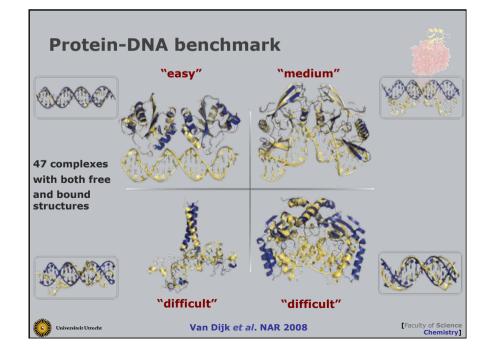

When does the model stop and the structure start?

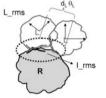


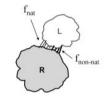




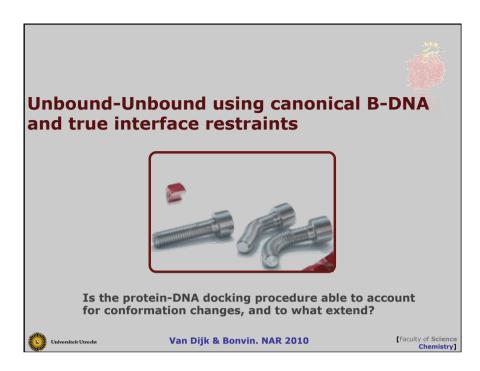


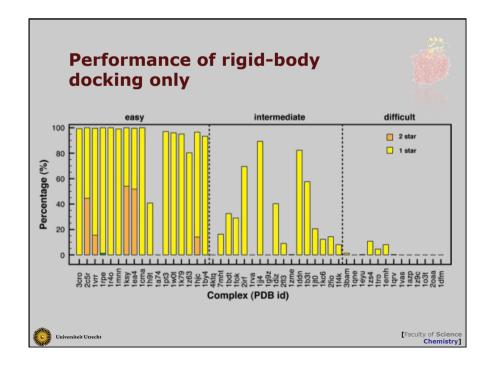


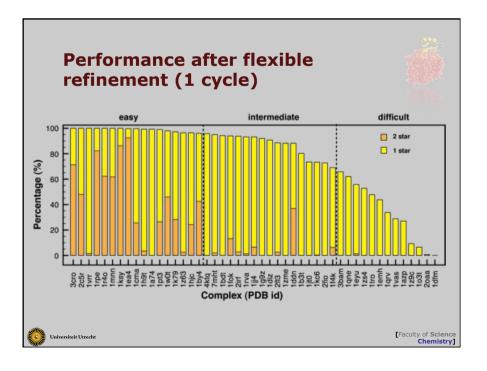


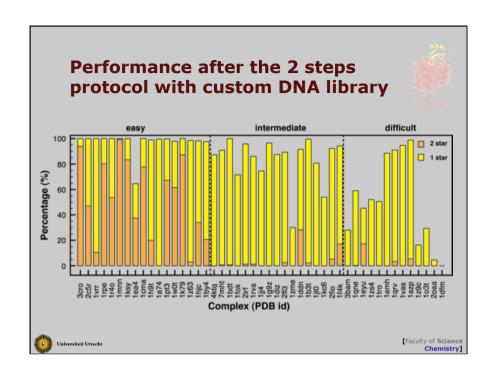


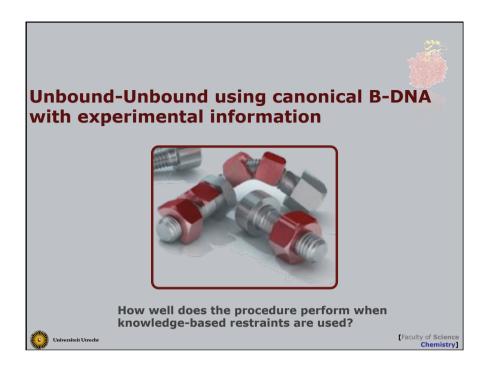
Assessment terminology

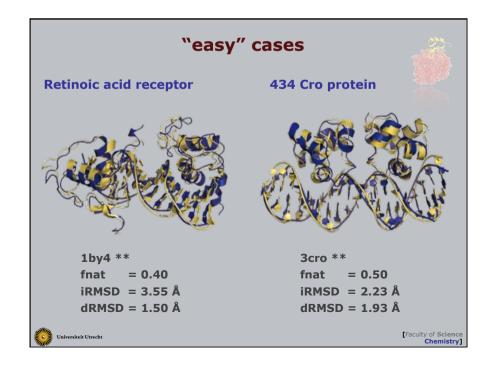

	F _{nat}	I-RMSD (Å)	i-RMSD (Å)
High (***)	≥0.5	≤1	≤1
Medium (**)	≥0.3	≤5	≤2
Acceptable (*)	≥0. 1	≤10	≤4
Incorrect	<0.1	>10	>4

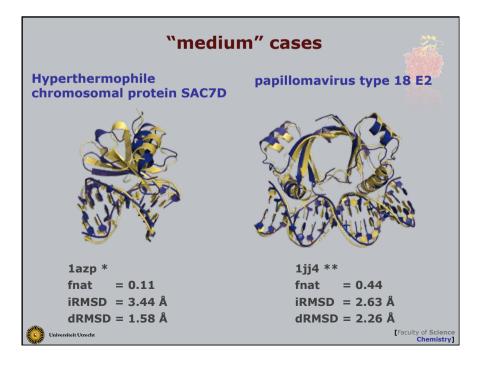


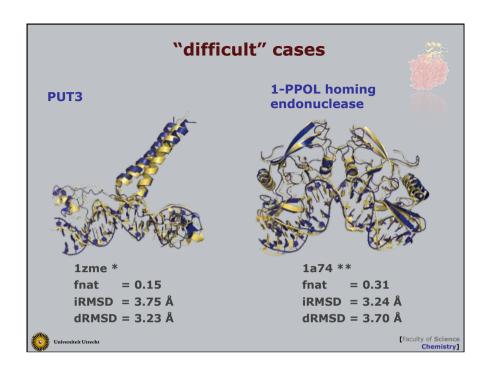

- ▶ i-RMSD: Interface RMSD
- I-RMSD: Ligand RMSD
- ▶ F_{nat}: Fraction of native contacts

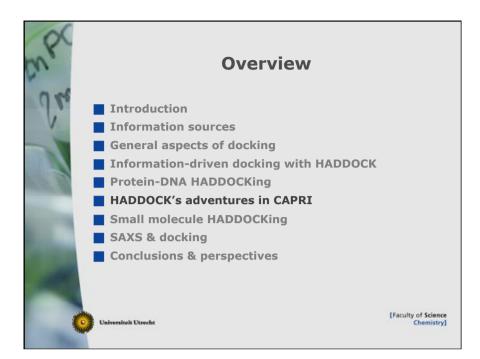



Lensink et al. Proteins 2007









HADDOCK's adventures in CAPRI

'Critical assessment of predicted interactions"

http://capri.ebi.ac.uk

- CAPRI is a blind test for protein-protein docking
- Usually 3 weeks for a predictions, 10 models can be submitted
- We participated to rounds 4 to 19 for a total of 27 targets
- For HADDOCK, we derived information to define AIRs from literature and bioinformatic predictions

Van Dijk et al. Proteins 2005; de Vries et al. Proteins 2007,2010

[Faculty of Science

Performance of the HADDOCK team in CAPRI rounds 13-19


```
[1, 1, 2, 1, 1, 1, 0, 0, 0, 0] BU
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UU
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UU
• 32
• 33
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UH
• 34
         [2, 2, 1, 2, 1, 1, 0, 0, 0, 0] UB
```

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] HH • 35 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] BH

• 37 [0, 0, 2, 2, 0, 0, 0, 0, 0, 0] UH (2 *** uploaded) [0, 0, 0, 0, 0, 0, 0, 0, 0] UH \ Two-domain protein - crystal

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UB **J** [3, 3, 3, 3, 3, 3, 3, 3, 3] UB

structure incompatible with covalently linked domains!!!

[1, 1, 2, 2, 1, 1, 1, 1, 1, 1] UH

[0, 0, 0, 0, 0, 0, 0, 0, 1] HH(H)

1 ***, 4 **, 1 *, 12 stars

Performance of the HADDOCK server in CAPRI rounds 15-19

Two-domain protein – crystal structure incompatible with

covalently linked domains!!!

- 32 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UU
- 33 [0, 0, 0, 0, 0, 0, 0, 0, 0] UH
- 34 [1, 1, 1, 1, 1, 0, 0, 0, 1] UB
- 35 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] HH
- 36 [0, 0, 0, 0, 0, 0, 0, 0, 0] BH
- 37 [0, 0, 0, 0, 0, 0, 0, 0, 0] UH
- 38 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UH
- 39 [0, 0, 0, 0, 0, 0, 0, 0, 0] UB
- 40 [0, 0, 3, 0, 0, 0, 0, 0, 0, 0] UB
- 42 [0, 0, 0, 0, 0, 0, 0, 1, 0] HH(H)

1 ***, 1 **, 2 *, 7 stars

[1, 1, 2, 1, 0, 0, 0, 0, 0, 0] UH

• 41

Faculty of Science

Post-docking interface prediction

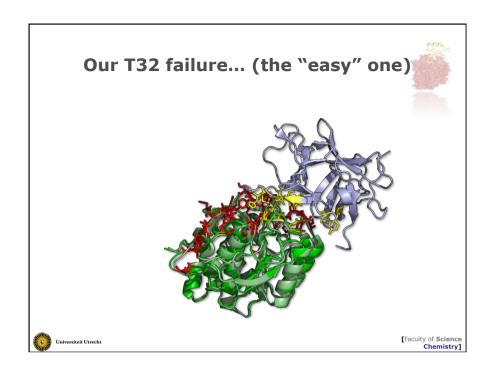
Target	Fraction true interface coverage		Fraction ov	erprediciton
	ligand receptor		ligand	receptor
T29	0.92	0.88	0.11	0.20
Т30	0.84	0.73	0.26	0.39
T32	0.87	0.75	0.25	0.31
Т33	0.61	0.42	0.20	0.50
T34	0.61	0.87	0.17	0.10
T37	0.36	0.89	0.66	0.27
T40	0.90	0.96	0.05	0.03
T41	0.89	0.83	0.04	0.15
T42	0.87	0.87	0.14	0.14

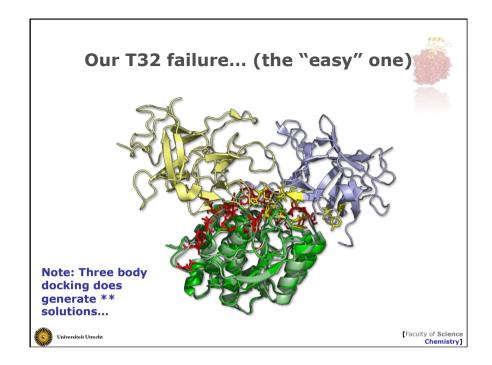
HADDOCK's performance in CAPRI

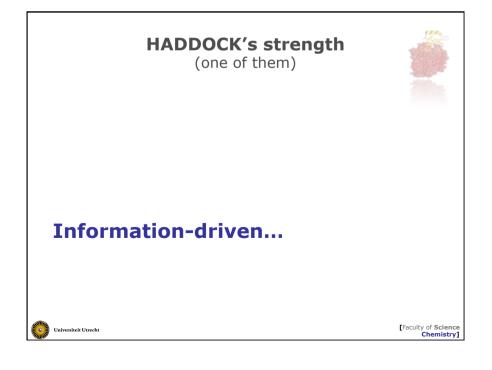
- Overall performance:
 - 3***, 9**, 3* 15 out of 25 (60%)
- Unbound only performance:
 - 6**, 2* 8 out of 13 (62%)
- As good as it gets... (among the top performing methods)
- "wrong" solutions still often have correctly predicted interfaces, but wrong orientations of the components
- ==> still useful to direct the experimental work

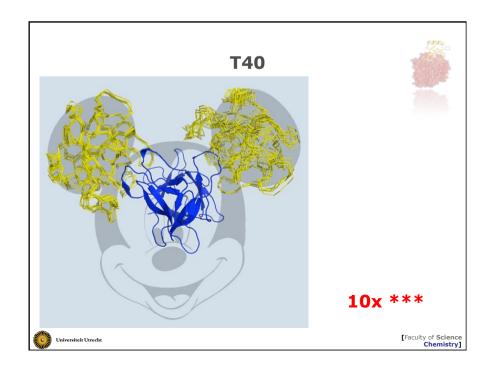
Van Dijk et al. *Proteins* 2005; de Vries et al. *Proteins* 2007,2010

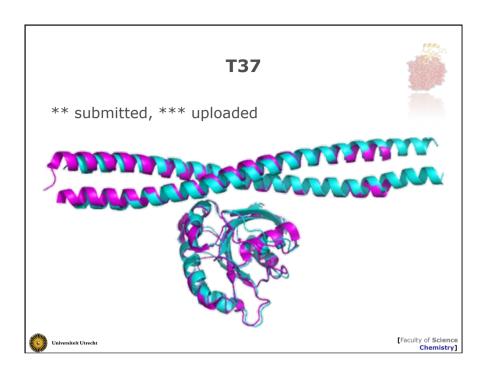
[Faculty of Science Chemistry]

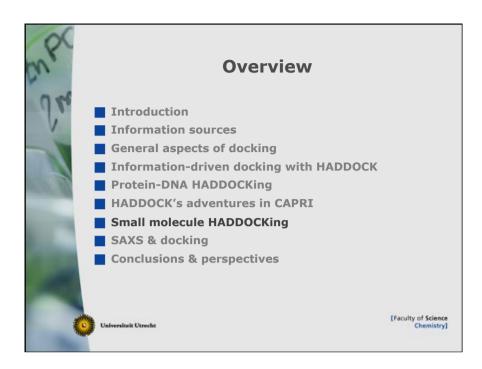

HADDOCK's weakness

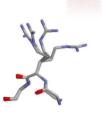

(one of them)

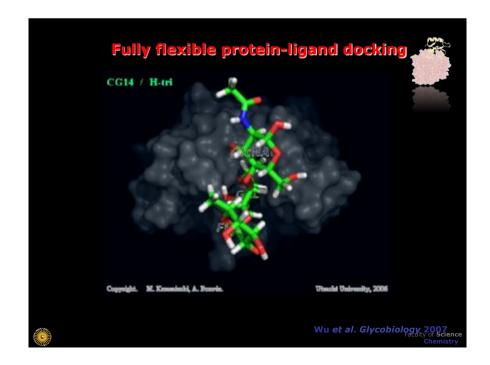



Information-driven...

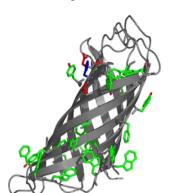




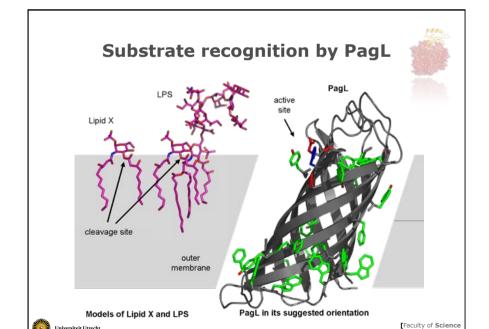


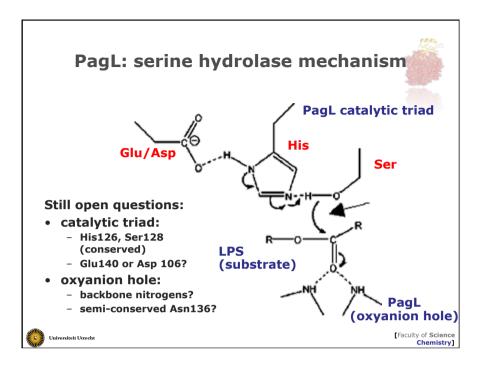

Small molecules docking with HADDOCK

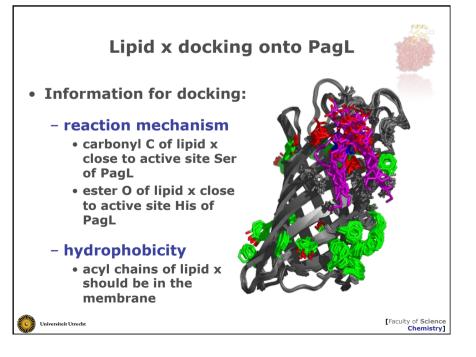
- Docking protocol issues:
 - Pre-sample ligand conformations
 - use ensemble for docking
 - same for protein

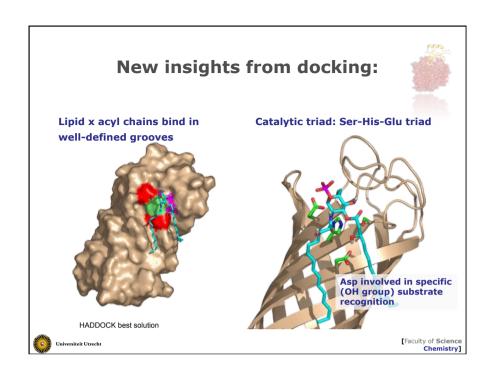

 If flexibility is expected to play an important role (e.g. docking of an unstructured peptide onto a protein), perform a fully flexible docking during the simulated annealing phase

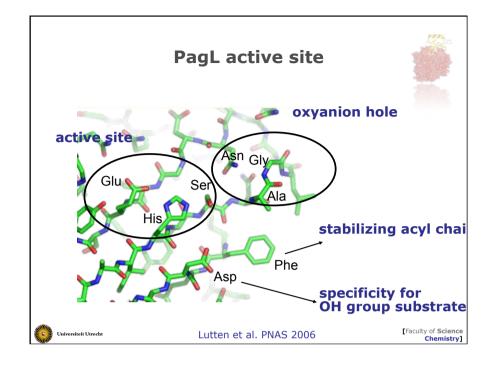
HADDOCK-modelling of substrate binding in PagL, an outer-membrane enzyme involved in LPS-modification

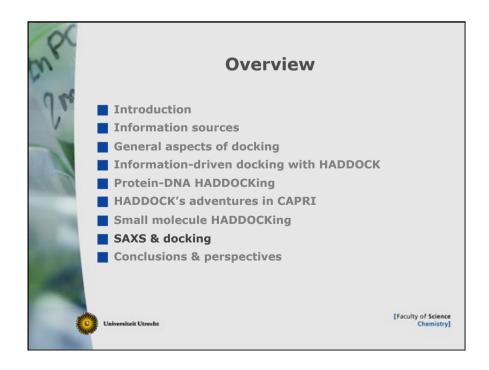

PagL

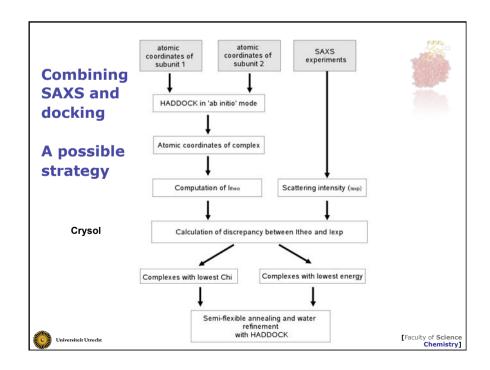

- Deacetylase (hydrolysis of acylesterbond)
- Activity found in S. typhimurium, B. Bronchiseptica and P. aeruginosa
- PagL homologues found in more than 10 bacterial species
- Crystal structure solved in Utrecht
- · Only three residues conserved (Phe104, His126, Ser128)
- · Site directed mutagenesis: serine hydrolase

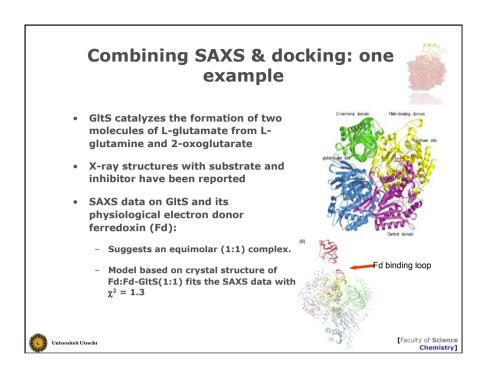

Crystal and Structural Chemistry

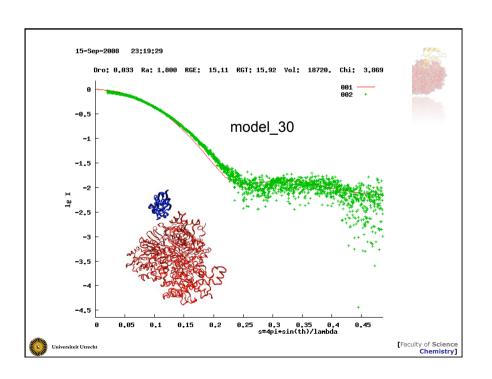


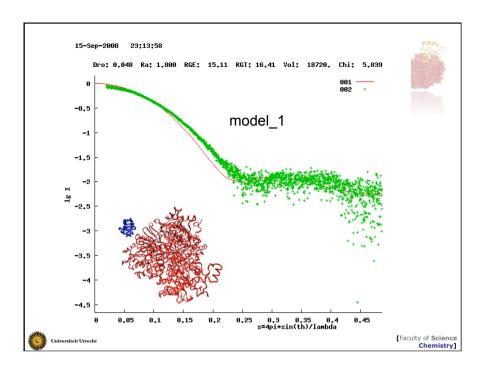

- Wietske Lambert
- Lucy Vandeputte-Rutten
- Piet Gros

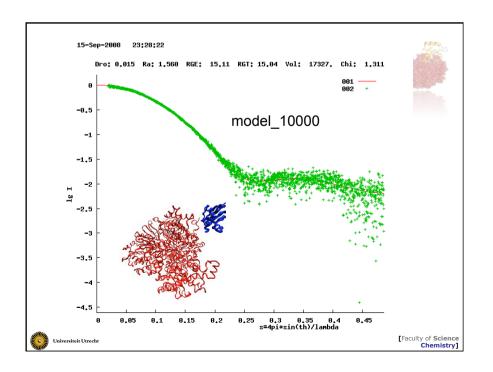


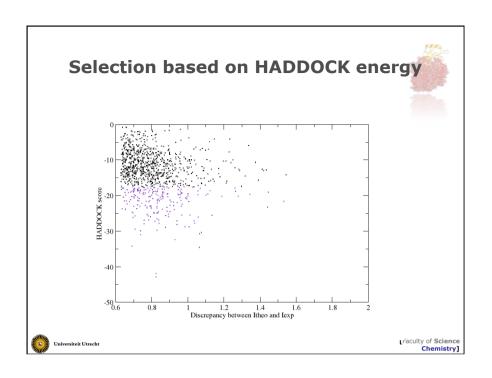


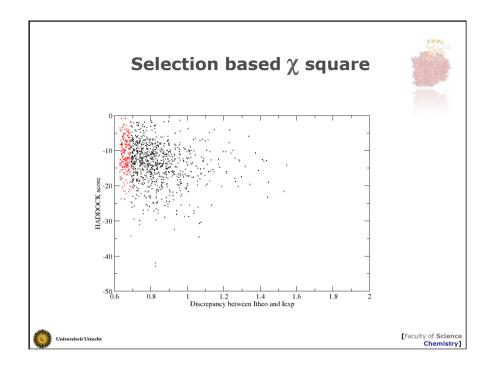


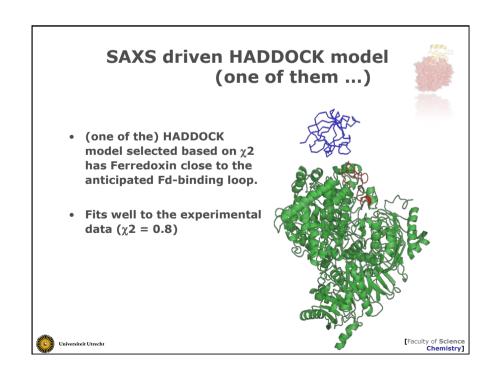


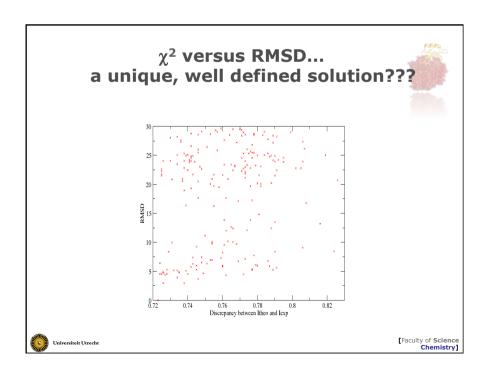


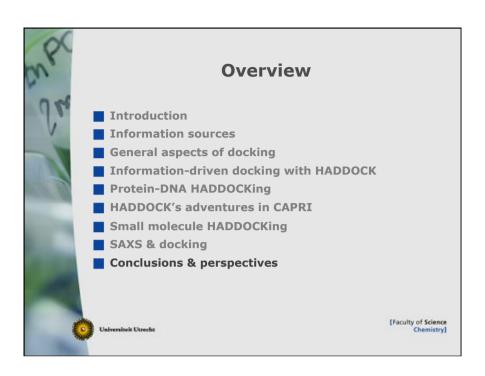












Conclusions & Perspectives

- Data-driven docking is useful to generate models of biomolecular complexes, even when little information is available
- While such models may not be fully accurate, they provide working hypothesis and can still be sufficient to explain and drive the molecular biology behind the system under study
- Data-driven docking is complementary to classical structural methods
- Many challenges however remain:
 - Scoring
 - Predicting and dealing with conformational changes
 - Predicting binding affinities

[Faculty of Science Chemistry]

Acknowledgements

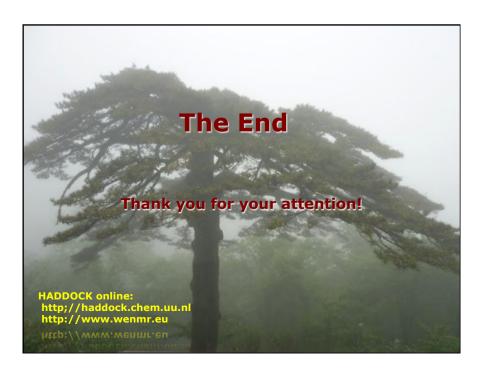
The HADDOCK team

- Cyril Dominguez
- Aalt-Jan van Dijk
- Sjoerd de Vries
- Marc van Dijk
- Mickaël Krzeminski
- Ezgi Karaca
- Panagiotis Kastritis
- Joao Rodrigues
- Annalisa Bordogna
- Aurélien Thureau
- Tsjerk Wassenaar
- Adrien Melquiond
- Christophe Schmitz
- Victor Hsu (Oregon State U
- victor riou (oragon otata
- Rolf Boelens
- Alexandre Bonvin

(Oregon State U.) ns Bonvin Babis Kalodimos'lab Rutger University

Marc Timmers lab
Utrecht Medical Center

Piet Gros lab Utrecht Science Faculty


€€:

Visitor grant VICI NCF (BigGrid)

SPINE II
Extend-NMR
NDDP
HPC-Europe
BacABs
e-NMR

