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A brief introduction to SAXS

M.H.J. Koch
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SAXS
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classical electron radius 
= 2.82 10-15 m

For SAXS this factor =1

sin2θ = 2θ cos 2θ = 1

I0=Iinexp(-µt)

r>>t

∆λ/λ~0

For a single electron:
very small!!
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Electrons in an electromagnetic field
are accelerated and therefore emit radiation: they scatter. The spatial 
distribution of the scattered intensity depends on the geometry of the
experiment. For unpolarized incident radiation the spatial distribution
on the equator is:
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where 2θ is the angle 
between the incident and 
the scattered beam.

corresponds to the 

natural frequency 
(ν0=ω0/2π) of the oscillator 
and ω to the frequency of 
the incident radiation.
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in the previous equation is the one describing the frequency
dependence. For the AMPLITUDE (E with I= E·E*)

The natural frequency of the oscillator (ω0) corresponds to the binding 
strength of electrons in atoms and lies somewhere in the UV to 
X-ray region. If the incident radiation is visible light  (λ ≈ 500 nm),
ω << ω0 and the factor reduces to:
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The amplitude of the scattered radiation at r is proportional to ω2 and
in phase with the incident radiation. This is

Rayleigh scattering.

The scattered intensity is proportional to ω4 hence the blue sky.

The most interesting factor
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X-Rays
If the incident radiation is X-rays (λ ≈ 0.1 nm), ω0 << ω
and the factor
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The scattering amplitude is independent of the frequency and its phase 
is shifted  by 180 degrees relative to the incident radiation. This is

Thomson scattering

= -1

As it  is independent of the frequency of the incident radiation, the world
of X-rays is colorless with shades of gray (i.e. contrast) only and Eq.1 
above simplifies to:
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Energy out /energy in
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b: scattering length =

r0 = 2.810-15 m for the electron

Energy scattered/unit solid angle/unit time

Energy incident/unit area/unit time

The differential scattering cross-section

has the dimension of an area and represents

For one electron: the amplitude of scattering |Ie(0)|1/2= 2.810-15|I0|1/2 and 
as the scattering amplitude ≡ f =

amplitude scattered by an object
amplitude scattered by an electron in identical conditions

fe =1
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Particle size (D) and wavelength of the radiation

When λ >> D all N electrons in the particle are accelerated in phase
the scattering amplitude is N times that of one electron.

When λ < D the electrons in the particle are no longer moving in phase
and one has to take the phase shift of the waves into account.

ObserverObserver

λ >> D    Light scattering λ < D       X-ray scattering
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Waves and Interference

Interferences lead to fringe patterns. This is

illustrated here with water waves.

When “solving” a structure the problem is to

go from the fringe pattern – in the case of 

X-ray diffraction from the intensities of the 

fringes – to the distribution of sources i.e.

of scatterers. 

Similar effects are observed with optical 

transforms obtained by shining coherent visible 

(laser) light through small apertures (see e.g.

Cantor and Schimmel , Biophysical Chemistry,

Part II, Ch. 13).
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Interference and coherent scattering
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The total amplitude from two centers (one at the origin and one at r) is thus:
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In Thomson (coherent scattering) the scattered wave is 180° out of phase
with the incident wave. 
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The sum of amplitudes for N electrons:

F(s) is the Fourier transform of the distribution of electrons
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The average of the exponential factor over all orientations of 
r relative to s

for randomly oriented particles (e.g. in solution) is:
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As this is a real number there is no phase problem but one has 
lost most of the structural information.
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Scattering factor

For λ = 0.15 nm   f’ = 0.3641
f” = 1.2855

dr
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For an atom with a continuous 
radial electron density ρ(r): 
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For modeling purposes one often
uses larger spherical subunits (beads,
dummy residues, etc) for which:
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Anomalous scattering

The scattering factor fe must be modified to take anomalous scattering 
into account

fe = 1 + fe’ + ife”
(f” is always π/2 ahead of the phase of the real part)

Note that for most practical purposes, f’ and f” are independent of
s = 2sinθ/λ
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Near an absorption edge, the dissipative effects due to the rearrangement 
of the  electrons can no longer be neglected. 
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Selenium f‘ and f‘‘
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Note the sign and absolute value of the corrections.
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Scattering from N spherical atoms:

F(s) is the Fourier transform of the distribution of the spherical atoms.
Crystallographers call this the structure factor. Note that in SAXS the 
structure factor refers to structure of the solution. The intensity is, of 
course:
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Debye  (1915)

Crystal structure -
atomic coordinates

Solution –
Distance distribution only! 

This is a real number!
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Short distances >> low frequencies dominate at
high angles
Large distances >> high frequencies contribute 
only at low angles.

In isotropic systems, each distance d = rij contributes a sinx/x –like term 
to the intensity. A scattering pattern is a continuous function of s.

SAXS:
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The wider a function in real space the 
narrower its transform in reciprocal space

1) The Fourier transform of the Dirac delta function

is the 1(x) function  (i.e. the function which has a constant value of  1 
over the  interval [-∞,∞].
2) Obviously, the  Fourier transform of 1(x) is δ(x).

∫
∞

∞−
=∞= 1δ(x)dx                δ(0)

3) The Fourier transform of a Gaussian is also a Gaussian 
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Note the relationship between the widths. If the Gaussian has a width
σR=(1/2a)½, its transform has a width σF=(a/2π2)½ and σRσF=1/2π.

The δ-function is an infinitely narrow Gaussian. 
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Kinetics of the Ca2+-dependent swelling 
transition of Tomato Bushy Stunt Virus

Perez et al.

Larger objects scatter at lower angles!
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In an ideal solution
The solute particles are randomly oriented and their positions
are uncorrelated in space and time. Consequently their scattering in
isotropic and incoherent. The total scattering intensity is the sum of
the coherent scattering intensity of all molecules. It is a function of 
the scattering angle or modulus of the scattering vector only: I(s). 

Usually one plots log(I(s)) vs s, because the intensity falls off 
rapidly due to the interferences.

i.e. for atoms one can neglect the 
s-dependence of fi

If one uses a continuous density distribution ρ(r) this becomes
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Interactions of X-rays with matter

Sample

fluorescence

Incident beam
Transmitted beam

Coherent scattering

I0

I=I0 exp(-µt)

Incoherent scattering

Structural information at the atomic/molecular level is in:  coherent scattering

and to a limited extent in absorption/fluorescence near edges (EXAFS, XANES)

At lower resolution transmission/phase contrast imaging is also useful
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Choice of wavelength

Absorption!!
Incoherent!!

Optimal thickness of the sample:  topt =1/µ ≈ 1 mm for H2O @ 1.5Å

For oxygen



21

Background

solution

buffer

with air gap

vacuum

Background arises from the incoherent
(Compton) scattering from the sample 
and from coherent and incoherent 
scattering due to air gaps, windows, 
solvent ….

To obtain the coherent scattering of 
the solute normalize the intensities of
solution and buffer to transmitted beam 
and subtract : 

I(s)= [I(s)/I0T]solution – [I(s)/I0T]buffer

Divide by c to normalize for concentration

Lysozyme : 14 289 Da MW
5 mg/ml solution in Acetate
buffer pH 4.5
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CONTRAST: < ρparticle(r) > - ρbuffer

Homogeneous solvent

Particle:

Solvent:

Only fluctuations in electron density contribute to the scattering:

rrsrs )diexp(2π)(ρ)(F
V

pp ⋅= ∫

rrss )diexp(2πρ)(F
V

bb ⋅= ∫ Ideally, a Dirac 
δ(0) and constant
in practice not

Iobs(s) = Ip(s) –Ib(s)
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Isolution(s) Isolvent (s)          Iparticle(s)

♦ To obtain scattering from the particles, solvent scattering 
must be subtracted to yield the excess scattering

ρp(r) = ρsolution(r) - ρb 

where ρb is the scattering density of the solvent

Solvent scattering and contrast
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Scattering arises from fluctuations 

In a perfectly homogeneous body the contribution of each small
scattering volume element to the scattering amplitude would always be
cancelled out by that of another one which is out of phase. This is why 
perfect crystals do not scatter visible light.
Solutions of  macromolecules or colloidal suspensions strongly scatter
visible light because of fluctuations in concentration.   
The fluctuations are also what links scattering to diffusion (e.g. DLS) and
thermodynamics (compressibility).
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EXCESS SCATTERING DENSITY

(Stuhrmann and Kirste, 1965)

)(ρρ-)(ρ)(ρρ) ρ( cbscx rrrr +=

shape

internal
structure

equivalent volume 
of solvent

)(ρ)(ρ )ρ-ρ( )ρ( scbx rrr += )(ρ)(ρ ρ sc rr +=

contrast

(s)I(s)Iρ(s)IρI(s) scsc
2 ++=The corresponding intensity is:

For a homogeneous particle: Is(s) =Ics(s) =0

ρc (r) has a value of 1 inside the particle and 0 outside and thus
represents the shape. ρs(r), the internal structure, represents the 
fluctuations around the average electron density of the particle ρx.
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A communication problem

(s)I(s)Iρ(s)IρI(s) scsc
2 ++=

For a homogeneous particle (i.e. a shape): Is(s) =Ics(s) =0

Is(0) =Ics(0)=0 always!

These two terms are the most
important in SAXS

This is essentially what
crystallographers talk about
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Scattered intensity
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Autocorrelation: Shift-Multiply-Integrate
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For a homogeneous body ρ(r) = ρ, γ(0) = ρ2V 

γ(r) : probability of finding a point at r from a given point (i).
Number of  volume elements i ∝ V;
Number of volume elements j ∝ 4πr2.
Number of pairs (i,j) separated by the distance r ∝ 4πr2Vγ0(r)=(4π/ρ2) p(r).

0( ) ( ) (0)r rγ γ γ= Characteristic function 

Distance distribution function
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I(s) and p(r)
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For a homogeneous particle p(r) represents the histogram of distances
between pairs of points within the particle.
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At low angles
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At very low angles one can use the approximation: 
exp(x)  = 1+ x + x2/2 +… which yields the Guinier formula
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Rg is the mean squared distance to the centre of scattering mass
weighted by the excess electron density. 
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Valid for a sphere for 

0 < 2ππππRgs<1.2

The plot of ln[I(s)] vs s2

[ ] [ ]
24

3
π

≅ − 2 2

gln I(s) ln I(0) R s

yields two parameters :

y-intercept: I(0)
Rg: from the slope

Guinier plot for 
ideal solutions
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Forward scattering I(0) and molar mass (M)
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Tip: Use a sample of similar contrast e.g.
a known protein ( BSA) as standard to 
calibrate the measurements:
MMsample= MMstand.I(0)/c)sample/(I(0)/c)stand.
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Radius of gyration
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If one places the origin of the coordinates at r0,,the centre of scattering
mass of the particles, this yields the expression for the radius of gyration
which is obtained from a  Guinier plot, Or even better, calculated from
the whole experimental scattering pattern:
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Rg is the second moment (standard deviation) of the electron 
density distribution.
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Guinier’s formula and the contrast
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where R is the radius of gyration and I(0) the forward scattering is: 22Vρ

If the contrast changes so do I(0) and R:
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2
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2

ρ

β

ρ

α
RR −+=

second moment of
internal structure

displacement of centre 
of scattering mass with 
contrast

α = 0α = 0α = 0α = 0 α > 0α > 0α > 0α > 0 β=0β=0β=0β=0 β>0β>0β>0β>0αααα < 0

radius of gyration 
at infinite contrast
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Contrast: X-rays 

 
Substance                   

 

X-

rays 

Proteins 2.5 

Nucleic acids 6.7 

Fatty acids -1.1 

Carbohydrates 4.5 

 

Average contrast (X 1010 cm-2) of biological macromolecular assemblies in water. 
 

One can change the contrast e.g. by 
adding salts like CsBr but this has 
disadvantages like increasing absorption,
fluorescence and changing ionic strength.

The alternative is to use anomalous 
scattering (see e.g Stuhrmann HB.
Acta Crystallogr A. 2008, 64:181-91)
but beware of radiation damage.

TIP: If you need to change the contrast
USE NEUTRONS!
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Typical values of radii of gyration
Mw Rg(nm)

Ribonuclease 12700                  1.48
Lysozyme 14800                  1.45
B-lactoglobulin 36700                  2.17
Bovine serum albumin                      68000                 2.95

Myosin                                             493000       46.8
Brome mosaic virus                          4.6 106                       13.4
Tobacco mosaic virus                       3.9 107 92.4

For a sphere of radius R: 22

5
3

RRg =
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For an infinite rod

)(1)()(),0,0( zyxf δδ=∞ )()(1)(1)0,,( ZYXF δ=∞∞

or a long fiber with its axis along z, the transform is limited to the
X,Y plane (i.e. the cross-section) 
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Y
FT

Remember δ(x)!

In such a case the radius of gyration of the cross-section and the
mass/unit length can be derived using a representation analogous
to the Guinier plot with a plot of sI(s) vs s2 to obtain
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m
ssI cπ−= For a circular cross-section

Rc=R/√2
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For a flat object like a membrane

)()(1)(1)0,,( zyxf δ=∞∞ )(1)()(),0,0( ZYXF δδ=∞

With a small thickness (T) along z, the transform is limited to the
Z-axis (i.e. the thickness) 

z

x
y

Z

X

Y
FT

Remember δ(x)!

In such a case the radius of gyration of the thickness and the
mass/unit area are obtained from a plot of s2I(s) vs s2 to obtain
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m
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Shape scattering

At larger s-values  the scattering of
a particle with ρs ≠ 0 oscillates 
around a straight line given by
POROD’s law:

s4I(s)= Bs4 +A

Subtract a constant equal to the
slope of the Porod plot to
obtain an approximation to the

SHAPE scattering
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Mixtures
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ni: number concentration of the ith species, with forward scattering
Ii(0) and radius of gyration  Ri.

These formula illustrate that a small quantity of high molecular
mass or hight contrast particles will have a large influence on
the scattering curve.

For modeling it is thus indispensable to 
make sure that the solutions do not contain aggregates!
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Proteins at low resolution
Hydration shell

Crowding max. conc. 
300-500mg/ml

IONS:
Kosmotropes e.g. Na+

Chaotropes e.g. K+

OSMOLYTES
e.g. free amino acids
polyhydroxy alcohols
methylated ammonium
and sulfonium compounds
urea. 

solvent

Interactions/ stability/activity
modulated by

FOLDING

Coupled equilibria
Non-contact interactions
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In the case of an unfolded protein : models developed for polymers

Gaussian chain : linear association of N monomers of length l with 
no persistence length (no rigidity due to short range interactions 
between monomers) and no excluded volume (i.e. no long-range 
interactions).

Debye formula : where 

I(s) depends on a single parameter, Rg .

Valid over a restricted s-range in the case of  interacting monomers 

Limit at large s :

2
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I(s) varies like s-2 instead of s -4 for a globular particle (Porod law).

Scattering by an extended chain
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arrows : angular range 

used for Rg determination

Pérez et al., J. Mol. Biol.(2001)

308, 721-743

Debye law for extended chains: NCS unfolding

2

( ) 2
( 1 )

(0)
xI s

x e
I x

−= − +

( )
2

2 gx R sπ=

Neocarzinostatine : small (113 residue long) all-β protein.



45

Is sensitive to the degree of compactness of a protein.

Globular particle : bell-shaped curve 

Gaussian chain : plateau at large s-values but a plateau does not 
imply a Gaussian chain!

Kratky plot:     s2I(s) vs s

Pérez et al., J. Mol. Biol.(2001), 308, 721-743

In thermal unfolding of NCS the 
Kratky plot has a plateau although
unfolded NCS is not a Gaussian 
chain when unfolded.
A thick persistence chain is a better
model in this case.
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Protein folding: cytochrome c

Akiyama, S. et al. (2002) Proc. Natl. Acad. Sci. USA, 99, 1329-34
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Protein folding: cytochrome c

Akiyama, S. et al. (2002) Proc. Natl. Acad. Sci. USA 99, 1329-34

?
Initial
Ensemble ?

expect 
>900 Å2

for random
chain !



48S. Akiyama et al. (2002), PNAS, (2002), 99, 1329-1334.

160 µs after mixing

44 ms after mixing

cytochrome c folding
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Labeling

D    L1    L2
D   X     X     X
L1  X    X      X
L2  X    X X

D    L1    L2
D   X     0      0 
L1  0      0     0
L2  0      0     0

D    L1    L2
D    X     X      0
L1   X     X     0
L2   0      0      0

D    L1    L2
D    X     0     X
L1    0     0     0     
L2   X     0     X

+ +-

L1 D L2

L1-D or L2-D

L1-D-L2

D Interference
FT

Distance between
L1 and L2

Matthew-Fenn R.S. et al. (2008)
Science 232, 446-9
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35

30
25
20
15

10bp

Note the difference in position  and width
(variance) of the distribution of end to end 
distances as a function of the number of
base pairs between labels. 
In absence of applied force DNA is at least
1000 softer than in single molecule 
stretching experiments. Stretching is 
cooperative over more than two turns of the
double helix. DNA is not an elastic rod.

Interference

FT
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What SAXS/SANS have to offer

SAXS
SANS

Electron microscopy

NMR

Modelling

Light scattering

Molecular 
Dynamics

ultracentrifugation

viscosity

Electric or flow
dichroism

chromatography

Perturbation methods
Labeling methods 


