Time resolved scattering studies

Clement Blanchet
Time resolved study

• Collect data at different time point to study sample whose structure are evolving in time

• A tool to study kinetics
Kinetic experiment

• Perturb a system

• Monitor the return to equilibrium
Perturbation

• Different techniques:
 – Mixing
 – T, P jump
 – Light triggered reaction,

• Homogeneous perturbation

• Fast perturbation for fast kinetic
Monitor the reaction

• Fast reaction \rightarrow short collection time

• But one need enough photons to collect a proper SAXS data \rightarrow High flux
High flux

• Third generation synchrotron

• Multilayer monochromator
Dead time

• Time between the beginning of the reaction and the first data point

• Depends on:
 – How fast the reaction is triggered
 – How fast the first point can be collected

• Short dead time needed to study fast kinetic
Time scale of biological processes

[Diagram showing various biological processes and their time scales, including helix/coil transition, beta-hairpin formation, hydrophobic collapse, proline isomerization, protein rotation, loop closure, side-chain contacts formation, and native state formation.]
Examples

• “Slow Kinetics”
 – Fibril formation
• Sub-Second kinetics
 – Stopped-flow
• Millisecond kinetics
 – Continuous flow
 – Caged compound
• Ultrafast kinetics
“slow” kinetics

Subsecond kinetics

- Stopped-flow (dead time: 1-10 ms)
Stopped flow - Example

Characterization of Transient Intermediates in Lysozyme Folding with Time-resolved Small-angle X-ray Scattering

Segel et al.
JMB, 1999, Volume 288 (3), 489-499
Lysozyme Folding

1 x
Lysozyme 3.6M GdmCl

5 x
Buffer Without GdmCl

Lysozyme 0.6M GdmCl
Lysozyme Folding

• Evolution of R_g in time
Singular value decomposition

(Wildegger & Kiefhaber, 1997)
Interrupted refolding experiment

• Double mixing step monitored by fluorescence
Reconstruction of the scattering profile

\[I(s, t) = \nu_C(t)I_C(s) + \nu_I(t)I_I(s) + \nu_N(t)I_N(s) \]

\[I(S') = \sum_k \nu_k I_k(S) \]
Continuous flow

Time resolved scattering studies - C. Blanchet
Continuous flow

• Continuous flow \rightarrow high sample consumption
 – Microfluidic continuous flow system

• Space \leftrightarrow time
 – low flux OK
 – time resolution \leftrightarrow flow rate and size of the beam

• Dead time ≈ 150 microseconds

Time resolved scattering studies - C. Blanchet

12/4/2012
Example continuous flow

Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Akiyama et al. PNAS 2002
Continuous flow

Mylar Film (22 µm Width)

Image intensifier & CCD

Syringe Drive

Mixing Plate (400 µm Width)

Distance (Time)

X-ray

200 x 400 µm

100 µm

33 x 400 µm

Mixing Point

12/4/2012

Time resolved scattering studies - C. Blanchet
Radius of gyration
Kratky plots
Singular value decomposition
Conformational landscape of Cyto C

![Graph showing the conformational landscape of Cyto C]

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Component I</th>
<th>Component II</th>
<th>Component N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_g, Å</td>
<td>D_{max}, Å</td>
<td>R_g, Å</td>
</tr>
<tr>
<td>U ↔ I → II → N*</td>
<td>20.5</td>
<td>66</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>13.9</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

12/4/2012

Time resolved scattering studies - C.
Blanchet
Caged compound release by flash photolysis

• DM-nitrophen
Calmodulin

Mastoparan
Equilibrium measurement
Kinetics

(A)

R_g^2 (Å2)

Time (msec)
12/4/2012

Time resolved scattering studies - C. Blanchet

0.5 ms

With mastoparan

Without mastoparan
Model
Ultra-fast time resolved
Ultra short collection time

- Beamline ID09B, ESRF, Grenoble
- Using the pulsed structure of the synchrotron

- About 5000000 bunch/sec
Isolate one bunch

• Isolate one bunch (ms shutter + fast chopper)
Single bunch experiment

• High flux needed

• Repetition of the measurements
Pump and probe experiment

Trigger with Laser pulse

Probe with X-ray

Bunch length ≈ 100 ps

Resolution: up to 100 ps
What is 100ps

100 psec \rightarrow second
Second \rightarrow 315 years

Light travels 3 cm in 100ps
Too fast for SAXS
TR WAXS

T and R states of hemoglobin

Looking at the unbinding of oxygen by hemoglobin

12/4/2012

Time resolved scattering studies - C. Blanchet
Experimental setup
Structural change in hemoglobin

(b) Graph showing intensity (I) vs. wavevector (q) for hemoglobin before and 31.6 µs after photolysis.

(c) Graph showing changes in intensity (ΔI) vs. wavevector (q).

(d) Snapshots showing structural changes at different time points: <150 ns, 3 µs, 1-10 ms.
Conclusion

• SAS can be used to study kinetic

• For fast reaction:
 – Special setup required to triggered the reaction
 – High flux is needed: third generation source
 (impossible with lab source and neutrons)