Fluorescence Correlation Spectroscopy and Förster Resonance Energy Transfer

Thorsten Wohland
Interaction of Light with Matter

incoming light

mirror-like reflection (specular reflection)

diffuse reflection

scattering

internal reflection

transmitted light

luminescence
Internal Conversion

- **Excited Singlet State** S_1
- **Ground State** S_0
- **Triplet State** T_1
- **Absorption**
- **Fluorescence**

VR: vibrational relaxation
IC: Internal Conversion
Intersystem Crossing

Ground State S_0

Excited Singlet State S_1

Triplet State T_1

Absorption

Fluorescence

Delayed Fluorescence

Photochemical reaction

Phosphorescence

VR: vibrational relaxation

ISC: Intersystem Crossing
Lifetimes, rate constants, and quantum yield

Excitation rate $k_{ex} \sim I$

- Lifetime
 $$\tau = \frac{I}{\Gamma + k_{nr}}$$

- Quantum yield
 $$\phi_f = \frac{\Gamma}{\Gamma + k_{nr}}$$
Fluorescence Properties

- Wavelength (absorption and emission)
- Lifetime (of various states)
- Quantum yield
- Polarization

http://micro.magnet.fsu.edu
F-techniques

Fluorescence Anisotropy

Fluorescence Lifetime

Single Particle Tracking

Fluorescence Recovery after Photobleaching
Förster Resonance Energy Transfer - FRET

A

Intensity [a.u.]

300 400 500 600 700

Wavelength [nm]

B

Efficiency

0 2 4 6 8 10

Distance [nm]

θD, θA, θr, θC2, R, φ

FRET
The actual formula for the FRET rate

\[k_T(r) = \frac{Q_D \kappa^2}{\tau_D r^6} \left(\frac{9000(\ln 10)}{128\pi^5 N_A n^4} \right) \int_0^\infty F_D(\lambda) \varepsilon_A(\lambda) \lambda^4 d\lambda \]

- **Orientation**
- **Distance**
- **Donor lifetime**
- **Spectral overlap**

Donor lifetime

\[k_T(r) = \frac{1}{\tau_D} \left(\frac{R_0}{r} \right)^6 \]

R_0 is the so-called **Förster radius**. It is the distance at which a FRET pair exhibits 50% FRET. It is a constant for any FRET-pair.

Environmental

\[E = \frac{k_T}{\tau_D^{-1} + k_T} \]

\[E = \frac{R_0^6}{R_0^6 + r^6} \]

Förster Distance Calculator
FRET to monitor conformational changes of a virus

- **Donor**: Alexafluor 488 TFP (AF488) labelled protein layer
- **Acceptor**: Dil labelled lipid bilayer

Near Donor – Acceptor
- High FRET
- Lower donor fluorescence intensity
- Lower average donor lifetime

Far Donor – Acceptor
- Low FRET
- High fluorescence intensity
- High average donor lifetime
Lifetime experiment

\[\tau_D = \frac{1}{\Gamma + k_{nr} + k_T} \]

Higher FRET at 25°C

- **25°C**
 - Intensity (kcts) vs. Time (s)
 - φ²₁ (Low FRET population)
 - τavg (ns)

- **37°C**
 - Intensity (kcts) vs. Time (s)
 - φ²₂ (High FRET population)
 - τavg (ns)

- **Temperature**
 - a₁ (Low FRET population) vs. Temperature
 - a₂ (High FRET population) vs. Temperature
Temperature dependence of lipid bilayer-protein coat distance

Temperature range: 25 to 37°C

DV2 (NGC) transition vs temperature in absence of MgCl$_2$

Temperature (°C): 25 to 37°C (Donor only)

Temperature (°C): 25 to 37°C (Dual labelled)

Temperature (°C): 37°C to 25°C (Dual labelled)

a_1 (low FRET population)

a_2 (High FRET population)
Single particle spectroscopy

Imaged under TIRF microscope
Single particle spectroscopy

Donor

Acceptor

iSMS

Overlay
Single particle spectroscopy

Molecule 1

- Donor Intensity
 - Background
 - Donor

Molecule 2

- Acceptor Intensity
 - Background
 - Acceptor

Molecule 3

- Overlay
 - Acceptor intensity
 - Donor Intensity

- E_{FRET}
 - Time(s)

Single particle spectroscopy
Single particle spectroscopy

(ref: Sean A. McKinney et al. 2002)
Summary 1

• FRET can measure distances in the range of ~10 nm
• It can be measured either by observing the emission wavelength or best by lifetimes
• It can be done in ensembles or on a single molecule level
• Here we demonstrated its application to viral conformations and holiday junction dynamics
Fluorescence Correlation Spectroscopy (FCS)

- What are fluctuations?
- What are correlations?
- How to calculate correlations?
- Fluorescence Correlation Spectroscopy (FCS)
- FRET-FCS
- Fluorescence Cross-Correlation Spectroscopy (FCCS)
- Imaging FCS/FCCS
Fluctuations

$$A + B \iff AB$$

[Diagram showing kinetics and equilibrium with fluctuations represented graphically.]
FCS: General idea

• What is a correlation
• Predicting the future
• Self-similarity
Correlations

\[\langle a \cdot b \rangle \neq \langle a \rangle \langle b \rangle \]

\[g = \frac{\langle a \cdot b \rangle}{\langle a \rangle \langle b \rangle} \]

- **Anti-correlation** \(g < 1 \)
- **No correlation** \(g = 1 \)
- **Correlation** \(g > 1 \)

Example

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Probability</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0.25</td>
<td></td>
<td><A> = 0.5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0.25</td>
<td></td>
<td> = 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td></td>
<td><AB> = 0.25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td></td>
<td><AB> = 0.25</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.25</td>
<td></td>
<td><AB> = 0.25</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.25</td>
<td></td>
<td><AB> = 0.25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.25</td>
<td></td>
<td><AB> = 0.25</td>
</tr>
</tbody>
</table>

\[
\langle A \rangle < \langle B \rangle = 1
\]
Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.2</td>
<td><A> = 0.5</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td> = 0.5</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td><AB> = 0.2</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td><A> = 0.8</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Probability</th>
<th>$\langle A \rangle = 0.5$</th>
<th>$\langle B \rangle = 0.5$</th>
<th>$\langle AB \rangle = 0.4$</th>
<th>$\frac{\langle AB \rangle}{\langle A \rangle \langle B \rangle} = 1.6$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlations

1. Correlated variables

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>\langle a \cdot b \rangle \geq \langle a \rangle \langle b \rangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0</td>
<td>1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0</td>
<td>\langle a \cdot b \rangle = \frac{1}{2}; \langle a \rangle \langle b \rangle = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}</td>
</tr>
</tbody>
</table>

2. Anticorrelated variables

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>\langle a \cdot b \rangle < \langle a \rangle \langle b \rangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0</td>
<td>0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1</td>
<td>\langle a \cdot b \rangle = 0; \langle a \rangle \langle b \rangle = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}</td>
</tr>
</tbody>
</table>

3. Uncorrelated variables

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>\langle a \cdot b \rangle = \langle a \rangle \langle b \rangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>\langle a \cdot b \rangle = \frac{1}{2}; \langle a \rangle \langle b \rangle = \frac{1}{2} \cdot 1 = \frac{1}{2}</td>
</tr>
</tbody>
</table>

\[a \cdot b \text{ represents the inner product of } a \text{ and } b. \]
Autocorrelations

\[\langle a(t) \cdot a(t) \rangle \geq \langle a(t) \rangle \langle a(t) \rangle \]

\[\langle a(t) \cdot a(t + \tau) \rangle \geq \langle a(t) \rangle \langle a(t + \tau) \rangle \]

\[G(\tau) = \frac{\langle a(t) \cdot a(t + \tau) \rangle}{\langle a(t) \rangle \langle a(t + \tau) \rangle} \]

\[G(\tau) = \frac{\langle F(t + \tau)F(t) \rangle}{\langle F(t + \tau) \rangle \langle F(t) \rangle} = \frac{\langle F(t + \tau)F(t) \rangle}{\langle F(t) \rangle^2} \]

Stationary Processes
Short time shifts τ

\[\langle F(t) \cdot F(t + \tau) \rangle \geq \langle F(t) \rangle \langle F(t + \tau) \rangle \]

Blue: $F(t)$
Yellow: $F(t + \tau)$

The intensity peaks always overlap to some extent and thus

\[\langle F(t) \cdot F(t + \tau_3) \rangle \]
Long time shifts τ

The intensity trace contains a random pattern of intensity peaks. Therefore an overlap of all/many peaks is only achievable at short times.

$$\langle F(t) \cdot F(t + \tau) \rangle \neq \langle F(t) \rangle \langle F(t + \tau) \rangle$$

Blue: $F(t)$
Yellow: $F(t + \tau)$
Periodic signals

\[\langle F(t) \cdot F(t + \tau) \rangle \approx \langle F(t) \rangle \langle F(t + \tau) \rangle \]

Blue: \(F(t) \)
Yellow: \(F(t + \tau) \)

The intensity trace contains a regular pattern of intensity peaks (i.e. it is repeated). Therefore an overlap of all/many peaks is achievable periodically and the correlation function will show that periodicity.
ACF: Autocorrelation Function (the correlation of a variable with itself)

CCF: Cross-correlation Function (the correlation between two variables)
How is an ACF calculated practically?

Intensity values recorded every nanosecond

To calculate the correlation for the range of seconds you would need 1 billion values ...

If we make the time bins larger then we lose the information at short times.

So best would be to use a varying time scheme.

Correlation Time Schemes

The typical scheme used is called the semi-logarithmic time scale. The first \(n \) channels have a time \(\Delta \tau \). The second group contains \(n/2 \) channels with \(2 \Delta \tau \). The next group \(n/2 \) channels with \(4 \Delta \tau \).

1) Each time a new measurement of length \(\Delta \tau \) comes in, calculate all ACF values for lag times 0 to 16\(\Delta \tau \).

2) After 2 measurements of \(\Delta \tau \), correlate the last two newest measurements with all channels in group 2. Then take the last two channels of group 1 and combine them into one channel with width 2\(\Delta \tau \) of group 2 and shift.
Confocal FCS setup

Thompson, *Topics in Fluorescence Spectroscopy Techniques* vol 1 (1991)
Haustein and Schwille, *Biophysics Textbook Online*
FCS: Characteristic Parameters

\[
\tau_D \propto \frac{3}{\sqrt{M}}
\]

\[
G(0) \sim \frac{1}{N}
\]
Correlation Functions

\[G(\tau) = \frac{1}{\langle C \rangle \pi^{3/2} w_0^2 z_0} \left(1 + \frac{4D\tau}{w_0^2} \right)^{-1/2} \left(1 + \frac{4D\tau}{z_0^2} \right)^{-1/2} \]

Number of particles
\[N = \langle C \rangle V_{eff} = \langle C \rangle \pi^{3/2} w_0^2 z_0 \]

Correlation time
\[\tau_D = \frac{w_0^2}{4D} \]

Structure factor
\[K = \frac{z_0}{w_0} \]

\[G(\tau) = \frac{1}{N} \left(1 + \frac{\tau}{\tau_D} \right)^{-1} \left(1 + \frac{\tau}{K^2 \tau_D} \right)^{-1/2} + G_\infty \]
FCS

Parameters: Width, Amplitude, Shape

Width: characteristic time
Time scales accessible lie between:
1 ns and 1 s

Amplitude: concentration
Accessible range: 50 pM to 1 μM

Shape: Type of process

Live cell measurements

Differences in correlation width
Experimental process

Construction:
EGFR-GFP, EGFR-YFP, EGFR-mRFP

Transfection

Calibration

FCS, FCCS setup

Z-scan

EGFR-mRFP

Free mRFP

Comparison of cytosolic free FPs and membrane fusion EGFR-FPs

EGFR-GFP

GFP

Triplet state at microsecond
Photodynamics at hundred microseconds
Diffusion of membrane-localised EGFR-GFP at tens of milliseconds

Triplet state at microsecond
Photodynamics at hundred microseconds
Diffusion of cytoplasmic GFP 1 milisecond
Lignad-Receptor Binding

How to use amplitude and width of and autocorrelation function
Example: The 5HT$_3$ Receptor

The ligand GR65630 was labeled with Cy5

a) Determination of binding constants
b) And stoichionetry ...
Stoichiometry of ligand binding

$$R + nL \rightleftharpoons RL_n$$
Ligand-Receptor Interactions

Ligands: 0.5 – 1.1 kDa

$C_{12}E_9$ micelle: 60 - 70 kDa

5HT$_3$As-R + micelle: ~320 kDa

Does Binding Occur?

Binding Curve

GR-Cy5: $K_d^{FCS} = 15.7 \pm 8.0 nM$

$K_d^{RBA} = 18.0 \pm 2.0 nM$

Mass: 500±300 kDa

Stoichiometry: 1:1
FRET-FCS

Other fluctuations …
FRET-FCS

Fluorescence acquisition in donor and acceptor channels

Proximity ratio calculated
\[p = \frac{I_A}{I_A + ID} \]

ACF of Proximity ratio:
\[G_p(t) = \frac{\langle \delta P(t_0) \delta P(t_0 + t) \rangle}{\langle P(t_0) \rangle^2} \]

Fitting using Stretched Exponential Function

25 degree = 70 µs
50 degree = 37 µs
Dengue Virus 2 envelop dynamics

![Graph showing temperature dependence of DV2 Effective relaxation time and DV2 (NGC) Proximity ratio curves.](image)
Summary 2

- Autocorrelation functions provide a measure for the self-similarity of a signal.
- For a signal in time it provides the capability to predict the future (statistically).
- FCS provides information on dynamics of processes.
- In the case of diffusion it provides diffusion coefficients and concentrations.
- But any fluctuations can be measured and correlated (e.g. FRET-FCS).
Fluorescence Cross-correlation Spectroscopy (FCCS)
Fluorescence Cross-correlation Spectroscopy (FCCS)

Green (G, GR) + crosstalk (R) + background

Red (R, GR) + crosstalk (G) + background

GreenRed (GR) + crosstalk (G, R) + background
SW-FCCS

Fluorophores:
- Quantum dots
- Tandem dyes (energy transfer dyes)
- Organic dyes
- Fluorescent proteins

~2000 counts per second and particle

How to determine the K_d

$$[G] + [R] \leftrightarrow [GR]$$

$$K_d = \frac{[G][R]}{[GR]}$$

$$[G][R] = K_d [GR]$$

Line through origin with a slope of K_d
Cdc42 is a regulator of membrane trafficking and cytokeletal organization.

IQGAP1 is involved in regulation of cell motility and morphology and is supposed to bind the active GTP bound form of Cdc42.

Dominant negative (GDP bound)
Constitutively active (GTP bound)

- GTP: guanosine triphosphate;
- GDP: guanosine diphosphate;
- GEF: guanine nucleotide exchange factors;
- GAP: GTPase-activating proteins;
- GDI: guanine nucleotide exchange inhibitors.
SW-FCCS in zebrafish embryos
Examples of Applications

EGFR activation and signaling

Cytosolic protein interaction (cdc42/IQGAP1)

Ligand-receptor binding

- (Nodal Factor binding to activin receptor II)
 - Wang et al. (eLife, 2016)
IMAGING FCCS
FCS in a confocal system

1) Measurements are not simultaneous
2) Cell damage by long illumination times
Alternative illumination schemes

TIR – Total Internal reflection

VAI – Variable Angle Illumination

SPIM – Single Plane Illumination Microscopy

The z-sectioning of the illumination together with the xy-sectioning provided by the pixels of a camera define multiple observation volumes.

Imaging FCS

G(τ)

Concentration

D

N
Examples

DLPC/DSPC bilayer on glass

GFP-GPI on SH-SY5Y cells

Imaging Fluorescence Cross-Correlation Spectroscopy (TIRF illumination)

Neuroblastoma cell labeled with Dil-C18 (pos. control). 514 nm, 300 μW excitation.
Imaging FCCS on EGFR

Degree of dimerization

\[q = \frac{G_{GR}(0)}{\text{Min}\{G_G(0), G_R(0)\}} \]
Acknowledgements

Group members
Sun Guangyu*
Wang Xi*
Ng Xue Wen
Anand Paratap Singh*
Nirmalya Bag*
Radek Machan*

Jagadish Sankaran
Kamal Kant Sharma
Huang Shuangru*
Sibel Javas*
Angela Koh
Andreas Karampatzakis
Sarala N. Tantirimudalige
Jonathan Foo
Sapthaswaran Veerapathiran
Anjali Gupta

Collaborators
Vladimir Korzh and Cathleen The (IMCB)
Karuna Sampath (TLL, U of Warwick)
Christoph Winkler (NUS)
Jörg Langowski and Jan Krieger (DKFZ)
Timothy Saunders (NUS)