Static and dynamic light scattering.

Cy Jeffries
EMBL Hamburg
Introduction.

- The electromagnetic spectrum.
• **Four main outcomes when illuminating a sample with EM radiation**
• 1) Nothing happens – straight through (= Transmission)
• 2) Get absorbed.
• 3) Get absorbed and re-emitted at a different wavelength: Fluorescence.
• 3) **Scatter.** Elastic scattering = NO CHANGE IN ENERGY.
 Inelastic scattering = CHANGE in energy.
Now I take an electron...

And put it in an electromagnetic field...

...the electron begins to oscillate in the applied EM field at the frequency of the incident wave.
Option 1:

- The radiation is transmitted.

- However during the oscillation the phase velocity of the EM wave (defined as λ/T, where λ is the wavelength and T the phase period) is momentarily “slowed” due to the interaction with the electric field of the electron. It may undergo a phase delay (e.g., 90°).

- For bulk materials, the intrinsic ability of a material to slow the phase velocity, v, relates to the refractive index of the material, n, whereby:

$$n = c/v$$

- The refractive index of water (using a laser at around 589 nm) is about 1.333 meaning that the light travels 1.333 times slower in water compared to light in a vacuum (c).
Option 2: Elastic scattering.

‘Harmonic oscillation’ of the electron in the EM field (di-pole oscillation).

‘Momentum transfer to the photon without a loss of energy = elastic scattering.

Spherical wave front is produced.

Incident electromagnetic field of wavelength \(\lambda \).
Now think of a protein as a collection of electrons…

- If the protein is placed in an EM field with a wavelength MUCH LONGER that the overall size, the EM field will set up 'protein-wide' dipole oscillation.

- Intuitively, the larger the protein, the more electrons…
- The more electrons = higher probability of scattering = higher scattering intensity.
- So, if you can measure the intensity of the scattered radiation and know the protein concentration, you can obtain a molecular weight estimate.
In effect the macromolecule acts as a point source emitter of ‘scattered wavelets’ with the same wavelength as the incident beam (elastic scattering).

Incident beam: coherent, monochromatic, focused (e.g., a laser)

The magnitude of the scattering amplitudes.

\[\vec{E}_s = \left(\frac{\partial^2 m}{\partial t^2} \right) \frac{1}{r_D c^2} \]

Differential cross section (basically the probability of the volume occupied by the dipole, \(m \), through a certain time, \(t \), to scatter).

Inversely proportional to the sample-to-detector distance.
Just like SAXS, we cannot access the amplitudes. …we measure the intensities.

\[I_s = \left\langle E_s E_s^* \right\rangle \]

\[I(s) = \left\langle A(s) A(s)^* \right\rangle \]

There is less of an angular dependence in the intensities for \textit{visible} light scattering.

\textbf{Why?}

\textit{The wavelength!}

Light scattering experiments are typically performed at, for example, 589 nm (the sodium D-line), compared to 0.1 nm for SAXS!
Particles smaller than λ

- Isotropic scattering (low angular dependence of I_s)

Particles larger than λ

- Several dipoles set up within the sample macromolecule.
- $I_s =$ Size and shape dependent (form factor $P(q)$).

- If the wavelength is really small, like in SAXS, then multiple dipoles that sample small distances generate a significant angular dependence in I_s.

Lines of constructive amplitude interference = increase in I_s

Lines of destructive amplitude interference = decrease in I_s
Main issues

- Particles are in solution.
 - Therefore there has to be a difference between the refractive index of the solvent and the refractive index of the sample (analogous to contrast in SAS).

- Particles are moving in solution
 - Brownian motion.

- Particles may interact with the solvent (or each other)
 - Therefore interparticle interactions affect the scattering. The magnitude of the interaction is quantified by the second virial coefficient (analogous to, but not the same as, \(S(q) \) in SAS.)
The intensity

Essentially a ‘contrast’ term: The refractive index of the solute must be different to the solvent ($n_{D,0}$)!

And the wavelength

For an ideal solution: $\frac{\delta \pi}{\delta c} = \frac{kT}{M}$

Where for a real solution: $\frac{\delta \pi}{\delta c} = kT \left(\frac{1}{M} + 2A_2c + \cdots \right)$

Reformulating relative to a known standard, e.g., toluene, we express the intensity in terms of the Rayleigh ratio, R, which in effect is excess scattering intensity (normalised intensity of scattered light per solid angle per unit of illuminated scattering volume ΔV). Here Kc is shorthand for the ‘contrast’ term above, also taking into account instrument constants.

$$\frac{KL}{R} = \frac{1}{M}$$

$$\frac{KL}{R} = \frac{1}{M} + 2A_2c + \cdots$$

Taking into account the differential refractive index increment of the macromolecule, dn/dc (mL/g)

Proportionate to the concentration
…but, of course, in real solutions

• There is always some angular dependence on the scattering intensities. The magnitude of I_s at a given angle can be described by the momentum transfer, q:

$$q = \frac{4\pi n_d \sin\left(\frac{\theta}{2}\right)}{\lambda}$$

Refractive index term

Such that:

$$\frac{Kc}{R} = \frac{1}{\text{MP}(q)} + 2A_2c + \ldots$$

where $P(q)$ is the form factor

That can be additionally expressed as (here R_g^2 is the mean squared R_g):

$$\frac{Kc}{R} = \frac{1}{M} \left(1 + \frac{R_g^2}{3} q^2\right) + 2A_2c + \ldots$$

Compare to SAS

No refractive index term…why?

$$s = \frac{4\pi \sin \theta}{\lambda}$$

Compare to SAS

$$I(q) = N(\Delta\rhoV)^2 P(q)$$

Compare to SAS

$$I(q) = I(0)e^{-\frac{q^2R_g^2}{3}}$$
If the scattering intensities are measured at multiple angles as a function of concentration?

- **Zimm Plot: \(\frac{Kc}{R} \) vs \((q^2 + \text{calibration constant})\)**

Zero angle: Slope proportionate to second virial coefficient.

Extrapolate to zero angle, i.e., \(q = 0 \) and zero concentration and you obtain \(\frac{1}{M} \).

From LS Instruments: https://www.lsinstruments.ch
R_g? Don’t we use SAXS or SANS for that?

- **Yes!**
- Reason = for macromolecules of approximately 50-70 kDa the MALLS signals are pretty much equivalent/isotropic, i.e., there is no angular dependence, so you cannot extrapolate R_g from Zimm.
- 50-100 kDa, you have to be extremely careful *in terms of accurate protein concentration evaluation*. For SAXS and SANS, R_g is independent of concentration.
- The instrument must be exceptionally well-calibrated (detector responses have to be perfect). Pretty much technically difficult – i.e., annoying.
- In principle, you *might* get good results for particles with D_{max} between $\lambda/20$ and as you approach λ (λ is in the order of 600 nm, so for particles with $D_{max} > 30$ nm).
Example of second virial coefficient.

Protein in buffer with different salts

Repulsive interactions (positive A_2)

Attractive interactions (negative A_2)
All of this boils down to:

$$I_s \sim c \ (dn/dc)^2 \ M$$

at different angles. It is possible to measure the concentration of the solute using a refractive index instrument, such that:

$$RI \sim c \ dn/dc$$

From these values it is possible to obtain the M of a protein in solution.
MALLS: Multi-angle laser light scattering

Size exclusion chromatography (SEC)

Asymmetric Flow Field-Flow Fractionation

3-angle MALLS = 200 Da – 10 Mda
18-angle MALLS = 200 Da – 1 GDa

Differential refractometer
Asymmetric Flow Field-Flow Fractionation

Light scattering and RI measurements (continuous flow operation)
With AFFFF, smaller particles elute first (reverse of SEC)

Plot of Molar Mass vs elution time. The DRI Signal is shown as a overlay. Experiment was performed with Vd=0.3ml/min Vx=2.0 Loading: 1mg BSA
Right-angle laser light scattering (RALLS)

- Only one angle.
- Becomes increasingly inaccurate for larger particles (due to anisotropic scattering contributions, i.e., $P(q)$).

Viscotek TDA 305 - Malvern Instruments
Why is it called static light scattering?

• Measure the scattering intensity per unit time, i.e., the absolute mean intensity.

What happens if we increase the sampling time?

• We begin to observe fluctuations in the intensity around the mean.
Dynamic Light Scattering

- Essentially the intensity fluctuations are caused by the motions of particles in solution.
 - Particle size.
 - Solution viscosity.
 - Temperature.
 - Interactions.

Different lines of constructive and destructive amplitude interference develop through time and cause the fluctuations around the absolute mean intensity.

Particles move in solution

t = 0

t = 1
Robert Brown (1773-1858) observed the 'jiggling' of pollen grains in solution. We now call this 'Brownian Motion.'

Albert Einstein published a paper in 1905:
- a mean square displacement given by \(\langle r^2 \rangle = 6D\tau_c \)

\[\text{Distance, } r \]
\[\text{Diffusion coefficient, } D \]
\[\text{Correlation time, } \tau_c \]

- Diffusion coefficient: \(D = kT/ (6\pi\eta R_h) \) (for a sphere with a hydrodynamic radius \(R_h \), \(k=\text{Boltzman constant} \), \(T=\text{Temperature} \), \(\eta=\text{viscosity} \))

‘Stokes-Einstein relation’
What Einstein showed was that the diffusion of an object undergoing Brownian motion will diffuse at a particular rate (known as the mean squared displacement) and that this rate depended upon the number of atoms or molecules in a mole of the fluid in which the object is suspended (Avogadro’s number). From this one could determine the size of molecules.
Dynamic Light Scattering: *Hydrodynamic* properties of biomolecules in solution

- The fluctuations in intensity are evaluated via what is known as an autocorrelation function.

\[
\gamma(q, \tau) = \frac{\langle I(t)I(t+\tau) \rangle}{\langle I(t)^2 \rangle} \quad \tau \text{ is the delay time}
\]

\[
\gamma(\tau) = Ae^{-2\Gamma \tau} + B \quad A \text{ and } B \text{ are machine constants}
\]

where

\[
\Gamma = q^2 D \quad D = \frac{k_BT}{6\pi\eta R_h}
\]

and

\[
q = \frac{4\pi n_d \sin \left(\frac{\theta}{2}\right)}{\lambda}
\]
What does all this mean?

Monodisperse system:
Simple decay -- decay rate is proportional to the particle size and the diffusion coefficient (as well as wavelength, measurement angle, and refractive index.)

Polydisperse system:
Autocorrelation function is a sum of the exponential decays corresponding to each of the species in the population;

Importantly: the resolution for separating two different particle populations is approximately a factor of five x R_h or higher.
So what?

- We measure the correlation of the scattered intensity fluctuations over time, in the order of 10^{-6} to 10 seconds.

Large particles move slower in solution, i.e., take longer to shift position and hence the intensity fluctuations are correlated for a longer time (relative to $t = 0$).

Smaller particles move faster in solution and hence the intensity fluctuations are correlated for a shorter time (relative to $t = 0$).
Assuming that the temperature and solvent viscosity are the same...

Small particle

Autocorrelation quickly decays – half way down at 10 μs

Large particle

Intensity fluctuations correlate for a long time

Autocorrelation takes a great deal of time to decay – half way down at around 100 μs.
The slope of the exponential decay corresponds to polydispersity: The steeper the slope = the sample is less polydisperse (and vice-versa).

From the fit to the data, e.g., using the CONTIN algorithm, D can be extracted from which R_h can be estimated.

$$D = \frac{k_b T}{6\pi \eta R_h}$$

Notes on the hydrodynamic radius.

- Hydrodynamic radius:
 - Is what it implies: relates to the hydrodynamic behavior, i.e., the diffusion of a particle in a particular solution (taking into account temperature and viscosity).
 - We talk about ‘hard-sphere equivalents’: the R_h of a sample particle rotating in all directions plus the hydration layer is equivalent to the radius of a hard-sphere that diffuses in the same fashion as the sample particle under the same conditions.
 - The R_h is proportional to the inverse of the time decay in the autocorrelation function.
The shape factor.

The shape factor is the ratio:

\[\frac{R_g}{R_h} \]

The shape factor offers an additional structural parameter for evaluating the mass distribution of a particle

\[\frac{R_g}{R_h} \text{ of a sphere} = 0.78 \]

Flexible random coils (or self-avoiding walks) = 1.44–1.63 (depending on solvent and excluded volume effects)

Oblate spheroids = 0.88–0.99
Prolate ellipsoids = 1.36–2.24 (depending on the axial ratio)

Long cylinders or stiff rods = 1.8 to >2
Continuous-flow AFFFF DLS (‘QELS’) measurements separation of BSA. MALLS and DLS are measured in the same cell (Wyatt TREOS)

Plot of R_h vs elution time. The DRI Signal is shown as a overlay. Experiment was performed with $V_d=0.3\text{ml/min}$ $V_x=2.0$ Loading: 1mg BSA
Laboratory Exercise

Protein Analysis by Dynamic Light Scattering: Methods and Techniques for Students

Received for publication, May 23, 2012; accepted 23 July 2012

Bernard Lorber§, Frédéric Fischer†, Marc Bailly†, Hervé Roy†, and Daniel Kern†

From the §Research team Traduction mitochondriale et pathologies, Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France †Research team Fonctions et dynamiques des nanomachines de l’appareil de traduction, Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
Summary

- Light scattering techniques can be used to:
 - Obtain the molecular mass, mean-squared R_g, R_h, translation diffusion coefficient and second virial coefficient of a particles in solution.
 - Useful over a wide molecular weight range.
 - Can be used in conjunction with continuous-flow separation methods.

- Light scattering disadvantages:
 - Requires a solvent with a different refractive index compared to the solute (usually this is fine for most biomacromolecules in aqueous buffers).
 - Extremely sensitive to high-molecular weight species/dust/aggregates. **H ow e v e r ! If you see aggregates it in DLS, you will probably see them in SAS!**
 - DLS cannot resolve monomer-dimer equilibrium.
Acknowledgements

- Melissa Graewert
- BioSAXS Group at EMBL-HH