Primary data reduction and evaluation of the overall geometrical parameters

Al Kikhney
EMBL Hamburg
Outline

• 3D → 2D → 1D
• Experiment design and data reduction
 • Exposure time
 • Background subtraction
 • Dilution series
• Overall parameters:
 • Guinier analysis:
 \(R_g, I(0), \) molecular mass
 • Volume
 • \(p(r), D_{\text{max}} \)
SAXS experiment

- Few kDa to GDa
- Monodisperse and homogeneous
- Concentration: 0.5–10 mg/ml
- Amount: 10–100 μl
2D → 1D
Normalization
- Transmitted beam
- Exposure time

Background subtraction
SAXS data from macromolecules in solution

experimental SAXS pattern

log $I(s)$}

0 1 2 3 4 nm$^{-1}$

experimental SAXS pattern
SAXS data from macromolecules in solution

Log $I(s)$

Experimental SAXS pattern
Calculated from model

SAXS data from macromolecules in solution
SAXS data from macromolecules in solution

\[\log I(s) \]

experimental SAXS pattern

experimental SAXS pattern

calculated from model
Notations and units

X-ray \rightarrow

solution

2θ

s

X-ray detector
Notations and units

\[|s| = \frac{4\pi \sin \theta}{\lambda} \]

- \(|s| \) – scattering vector
- \(\theta \) – scattering angle
- \(\lambda \) – wavelength
- \(I(s) \) – intensity

By convention:

- \(s, \text{ nm}^{-1} \)
Exposure time

0.05 second
0.2 second
Exposure time

0.05 second
0.2 second
0.8 second
Exposure time

- 0.05 second
- 0.2 second
- 0.8 second
- 1.6 second

RADIATION DAMAGE!
Multiple exposures
Multiple exposures

frame 1
frame 2
Multiple exposures

average
Sample and buffer

I(s)

s, nm⁻¹
Sample and buffer

$\textbf{Sample and buffer}$

$I(s)$

$s, \text{ nm}^{-1}$

$\text{buffer } + \text{ cell}$
Sample and buffer

3.2 mg/ml lysozyme + buffer + cell
Background subtraction

Solution minus Solvent

I(s)

3.2 mg/ml lysozyme

s, nm⁻¹
Background subtraction

Solution minus Solvent

Normalization against:
• Concentration
Logarithmic plot

Log $I(s)$ vs. s, nm$^{-1}$
Dilution series

8 mg/ml
Dilution series

32 mg/ml
Dilution series

2 mg/ml
32 mg/ml
Inter-particle interactions

No interactions
Inter-particle interactions

Attractive interactions

Repulsive interactions
Merging data

Log I(s)

s, nm\(^{-1}\)
Merging data

Log $I(s)$

s, nm^{-1}
Merging data

Log $I(s)$ vs. s, nm^{-1}

Diagram showing a log-log plot with a steep decline followed by oscillations.
Data analysis
Shape

~6 nm

100 nm3
Shape
Shape

Log I(s) vs. s

1dqi
58 kDa

3oux
58 kDa

3odt
66 kDa

3zx6
63 kDa
Size

Log I(s)

200 nm³

100 nm³

50 nm³

25 nm³
Radius of gyration (R_g)

Definition

Measure for the overall size of a macromolecule

Average of square center-of-mass distances in the molecule weighted by the scattering length density
Radius of gyration (R_g)

R_g: 3.0 nm

R_g: 4.7 nm

Myomesin-1 My12-My13, SASBDB: SASDAK5
Radius of gyration (R_g)
Radius of gyration (R_g)

Guinier approximation:

$$I(s) \approx I(0) \exp(s^2 R_g^2 / -3)$$

$$s \lesssim 1/R_g$$

André Guinier
1911-2000
Radius of gyration (R_g)

Guinier plot
Radius of gyration (R_g)

Guinier plot
Radius of gyration (R_g)

Guinier plot

$y = ax + b$

$R_g = \sqrt{-3a}$

$sR_g < 1$
Radius of gyration (R_g)

Guinier plot

$\ln I(s)$

$R_g \pm \text{stdev}$

Forward scattering $I(0)$

Data quality

Data range
Aggregation

Log I(s)

s, 1/nm
Aggregation

Monodisperse sample
Aggregation

Aggregated sample
Guinier plot

\[\ln I(s) \]
Guinier plot

\[\ln I(s) \]

\[0.26 \text{ nm}^{-1} \]
\[0.63 \text{ nm}^{-1} \]

\[R_g = 2.0 \text{ nm} \]
\[s_{\text{min}} R_g = 0.52 \]
\[s_{\text{max}} R_g = 1.26 < 1.3 \]
Guinier plot

\[R_g = 2.3 \text{ nm} \]
\[s_{\text{min}} R_g = 1.01 \]
\[s_{\text{max}} R_g = 1.45 > 1.3 \]
\(I(0) \) and Molecular Mass

Assuming \(I(0) \) is normalized against concentration (mg/ml)

- \(I(s) \) on absolute scale (cm\(^{-1}\))

\[
\text{MM}_{\text{sample}} = 10^3 \frac{I(0)_{\text{sample}} N_A}{(\Delta \rho v_{\text{sample}})^2}
\]

- \(N_A \) – Avogadro’s number
- \(\Delta \rho \) – contrast in cm\(^{-2}\)
- \(v_{\text{sample}} \) – partial specific volume in cm\(^3\)/g

- \(I(s) \) on relative scale (a.u.)

\[
\frac{\text{MM}_{\text{sample}}}{\text{MM}_{\text{BSA}}} = \frac{I(0)_{\text{sample}}}{I(0)_{\text{BSA}}}
\]

\[
\text{MM}_{\text{sample}} = I(0)_{\text{sample}} \cdot \frac{\text{MM}_{\text{BSA}}}{I(0)_{\text{BSA}}}
\]
Porod volume

Excluded volume of the hydrated particle

\[
V_P = \frac{2\pi^2 I(0)}{\int_0^\infty [I(s) - K_4] s^2 ds}
\]

\(K_4\) is a constant determined to ensure the asymptotical intensity decay proportional to \(s^{-4}\) at higher angles following the Porod's law for homogeneous particles.
Porod volume

Excluded volume of the hydrated particle

\[V_P = \frac{2\pi^2 I(0)}{\int_0^\infty [I(s) - K_4]s^2 ds} \]

For proteins: \(\text{MW [kDa]} \sim \frac{V_p [\text{nm}^3]}{1.6} \)
Porod volume

Excluded volume of the hydrated particle

69.2 nm3

69.5 nm3

~43 kDa

~43 kDa

*Simulated data
Porod volume

Excluded volume of the hydrated particle

23.7 nm^3

\sim14.8 kDa

770 nm^3

\sim480 kDa

SASBDB: SASDA96

SASDA82
Determination of protein MW from a SAXS measurement on a relative scale

V. Piiadov et al. (2019) *Protein Sci.* 28(2), 454–463
Volume-of-correlation

Determination of the molecular mass of proteins or RNA ranging from 10 to 1000 kDa

Distance distribution function

\[\gamma(r) \]
Distance distribution function

\[p(r) = r^2 \gamma(r) \]
Distance distribution function

\[p(r) = r^2 \gamma(r) \]
Distance distribution function

$D_{\text{max}} = 6 \text{ nm}$

100 nm^3

$p(r)$

$r, \text{ nm}$
Maximum intra-particle distance D_{max}
Distance distribution function

\[p(r) \]

\[r, \text{ nm} \]
Distance distribution function
Distance distribution function

Log $I(s)$ vs. s, nm$^{-1}$

$p(r)$ vs. r, nm
\[I(s) = 4\pi \int_0^{D_{\text{max}}} p(r) \frac{\sin(sr)}{sr} dr \]

\[p(r) = \frac{r^2}{2\pi^2} \int_0^\infty \frac{s^2 I(s) \sin(sr)}{sr} ds \]
Distance distribution function

$p(r)$ plot

$p(r)$

D_{max}

r, nm

r, nm

$p(r)$
Data quality

$s_{\text{min}} < \frac{\pi}{D_{\text{max}}}$
R_g and $I(0)$ from $p(r)$

$$I(0) = 4\Pi \int_0^{D_{\text{max}}} p(r)dr$$

$$R_g^2 = \frac{\int_0^{D_{\text{max}}} r^2 p(r)dr}{2 \int_0^{D_{\text{max}}} p(r)dr}$$
Data reduction and analysis steps

1. Radial averaging
2. Normalization
3. Radiation damage check
4. Background subtraction
5. Merge multiple concentrations
6. R_g, molecular weight
7. D_{max}, $p(r)$
8. Porod volume
9. Ab initio shape determination

...
Thank you!
Structural and biophysical methods for biological macromolecules in solution

14 – 20 October 2019 | Santiago, Chile